首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jeukendrup, Asker E., Lars B. Borghouts, Wim H. M. Saris,and Anton J. M. Wagenmakers. Reduced oxidation rates of ingested glucose during prolonged exercise with low endogenous CHO availability. J. Appl. Physiol. 81(5):1952-1957, 1996.This study investigated the effect of endogenouscarbohydrate (CHO) availability on oxidation rates of ingested glucoseduring moderate-intensity exercise. Seven well-trained cyclistsperformed two trials of 120 min of cycling exercise in random order at57% maximal O2 consumption. Preexercise glycogen concentrations were manipulated byglycogen-lowering exercise in combination with CHO restriction[low-glycogen (LG) trial] or CHO loading[moderate-to-high-glycogen (HG) trial]. In the LG and HGtrials, subjects ingested 4 ml/kg body wt of an 8% corn-derivedglucose solution of high natural13C abundance at the start,followed by boluses of 2 ml/kg every 15 min. The third trial, in whichpotato-derived glucose was ingested, served as a control test forbackground correction. Exogenous glucose oxidation rates werecalculated from the 13C enrichmentof the ingested glucose and of the breathCO2. Total CHO oxidation was lowerin the LG trial than in the HG trial during 60-120 min of exercise[84 ± 7 (SE) vs. 116 ± 8 g;P < 0.05]. Exogenous CHOoxidation in this period was 28% lower in the LG trial compared withthe HG trial. Maximal exogenous oxidation rates were also lower(P < 0.05) in the LG trial (0.64 ± 0.05 g/min) than in the HG trial (0.88 ± 0.04 g/min). Thisdecreased utilization of exogenous glucose was accompanied by increased plasma free fatty acid levels (2-3 times higher) and lower insulin concentrations. It is concluded that glycogen-lowering exercise, performed the evening before an exercise bout, in combination with CHOrestriction leads to a reduction of the oxidation rate of ingestedglucose during moderate-intensity exercise.

  相似文献   

2.
Competitive athletes completed two studies of 2-h steady-state (SS) cycling at 70% peak O(2) uptake followed by 7 kJ/kg time trial (TT) with carbohydrate (CHO) intake before (2 g/kg) and during (6% CHO drink) exercise. In Study A, 12 subjects received either 6 mg/kg caffeine 1 h preexercise (Precaf), 6 x 1 mg/kg caffeine every 20 min throughout SS (Durcaf), 2 x 5 ml/kg Coca-Cola between 100 and 120 min SS and during TT (Coke), or placebo. Improvements in TT were as follows: Precaf, 3.4% (0.2-6.5%, 95% confidence interval); Durcaf, 3.1% (-0.1-6.5%); and Coke, 3.1% (-0.2-6.2%). In Study B, eight subjects received 3 x 5 ml/kg of different cola drinks during the last 40 min of SS and TT: decaffeinated, 6% CHO (control); caffeinated, 6% CHO; decaffeinated, 11% CHO; and caffeinated, 11% CHO (Coke). Coke enhanced TT by 3.3% (0.8-5.9%), with all trials showing 2.2% TT enhancement (0.5-3.8%; P < 0.05) due to caffeine. Overall, 1) 6 mg/kg caffeine enhanced TT performance independent of timing of intake and 2) replacing sports drink with Coca-Cola during the latter stages of exercise was equally effective in enhancing endurance performance, primarily due to low intake of caffeine (approximately 1.5 mg/kg).  相似文献   

3.
We studied the effects of the glycemicindex (GI) of preexercise meals on metabolism and performance whencarbohydrate (CHO) was ingested throughout exercise. Six well-trainedcyclists performed three counterbalanced trials of 2-h cycling at~70% of maximal oxygen uptake, followed by a performance ride of 300 kJ. Meals consumed 2 h before exercise consisted of 2 g CHO/kg bodymass of either high-GI potato (HGI trial) or low-GI pasta (LGI trial), or of a low-energy jelly (Con trial). Immediately before and throughout exercise, subjects ingested a 10 g/100 ml[U-14C]glucosesolution for a total of 24 ml/kg body mass. Despite differences inpreexercise glucose, insulin, and free fatty acids concentrations amongtrials, both total CHO oxidation for HGI, LGI, and Con trials,respectively, during steady-state exercise [403 ± 16, 376 ± 29, and 373 ± 24 (SE) g/2 h] andoxidation of the ingested CHO (65 ± 6, 57 ± 6, and 63 ± 5 g/2 h) were similar. There was no difference in time tocomplete the subsequent performance ride (946 ± 23, 954 ± 35, and 970 ± 26 s for HGI, LGI, and Con trials, respectively). WhenCHO is ingested during exercise in amounts presently recommended bysports nutrition guidelines, preexercise CHO intake has little effecton metabolism or on subsequent performance during prolonged cycling(~2.5 h).

  相似文献   

4.
Eight male subjects performed leg press exercise, 4 × 10 repetitions at 80% of their maximum. Venous blood samples were taken before, during exercise and repeatedly during 2 h of recovery. From four subjects, biopsies were taken from the vastus lateralis muscle prior to, immediately after and following one and 2 h of recovery. Samples were freeze-dried, individual muscle fibres were dissected out and identified as type I or type II. Resistance exercise led to pronounced reductions in the glutamate concentration in both type I (32%) and type II fibres (70%). Alanine concentration was elevated 60–75% in both fibre types and 29% in plasma. Glutamine concentration remained unchanged after exercise; although 2 h later the concentrations in both types of fibres were reduced 30–35%. Two hours after exercise, the plasma levels of glutamate and six of the essential amino acids, including the branched-chain amino acids were reduced 5–30%. The data suggest that glutamate acts as an important intermediate in muscle energy metabolism during resistance exercise, especially in type II fibres.  相似文献   

5.
The effects of menstrual cycle phase and carbohydrate (CHO) supplementation were investigated during prolonged exercise. Nine healthy, moderately trained women cycled at 70% peak O(2) consumption until exhaustion. Two trials were completed during the follicular (Fol) and luteal (Lut) phases of the menstrual cycle. Subjects consumed 0.6 g CHO. kg body wt(-1). h(-1) (5 ml/kg of a 6% CHO solution every 30 min beginning at min 30 of exercise) or a placebo drink (Pl) during exercise. Time to exhaustion during CHO increased from Pl values (P < 0.05) by 14.4 +/- 8.5 (Fol) and 11.4 +/- 7.1% (Lut); no differences were observed between menstrual cycle phases. CHO attenuated (P < 0.05) the decrease in plasma glucose and insulin and the increase in plasma free fatty acids, tryptophan, epinephrine, and cortisol observed during Pl for both phases. Plasma alanine, glutamine, proline, and isoleucine were lower (P < 0.05) in Lut than in Fol phase. CHO resulted in lower (P < 0.05) plasma tyrosine, valine, leucine, isoleucine, and phenylalanine. These results indicate that the menstrual cycle phase does not alter the effects of CHO supplementation on performance and plasma levels of related substrates during prolonged exercise.  相似文献   

6.
Alanine racemase catalyzes the interconversion of d- and l-alanine and plays an important role in supplying d-alanine, a component of peptidoglycan biosynthesis, to most bacteria. Alanine racemase exists mostly in prokaryotes and is generally absent in higher eukaryotes; this makes it an attractive target for the design of new antibacterial drugs. Here, we present the cloning and characterization of a new gene-encoding alanine racemase from Pseudomonas putida YZ-26. An open reading frame (ORF) of 1,230 bp, encoding a protein of 410 amino acids with a calculated molecular weight of 44,217.3 Da, was cloned into modified vector pET32M to form the recombinant plasmid pET–alr. After introduction into E.coli BL21, the strain pET-alr/E.coli BL21 expressed His6-tagged alanine racemase. The recombinant alanine racemase was efficiently purified to homogeneity using Ni2+–NTA and a gel filtration column, with 82.5% activity recovery. The amino acid sequence deduced from the alanine racemase gene revealed identity similarities of 97.0, 93, 23, and 22.0% with from P. putida F1, P. putida200, P. aeruginosa, and Salmonella typhimurium, respectively. The recombinant alanine racemase is a monomeric protein with a molecular mass of 43 kDa. The enzyme exhibited activity with l-alanine and l-isoleucine, and showed higher specificity for the former compared with the latter. The enzyme was stable from pH 7.0–11.0; its optimum pH was at 9.0. The optimum temperature for the enzyme was 37°C, and its activity was rapidly lost at temperatures above 40°C. Divalent metals, including Sr2+, Mn2+, Co2+, and Ni2+ obviously enhanced enzymatic activity, while the Cu2+ ion showed inhibitory effects.  相似文献   

7.
We investigated the effect of carbohydrate (CHO) ingestion before and during exercise and in combination on glucose kinetics, metabolism and performance in seven trained men, who cycled for 120 min (SS) at approximately 63% of peak power output, followed by a 7 kJ/kg body wt time trial (TT). On four separate occasions, subjects received either a placebo beverage before and during SS (PP); placebo 30 min before and 2 g/kg body wt of CHO in a 6.4% CHO solution throughout SS (PC); 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and placebo throughout SS (CP); or 2 g/kg body wt of CHO in a 25.7% CHO beverage 30 min before and 2 g/kg of CHO in a 6.4% CHO solution throughout SS (CC). Ingestion of CC and CP markedly (>8 mM) increased plasma glucose concentration ([glucose]) compared with PP and PC (5 mM). However, plasma [glucose] fell rapidly at the onset of SS so that after 80 min it was similar (6 mM) between all treatments. After this time, plasma [glucose] declined in both PP and CP (P < 0.05) but was well maintained in both CC and PC. Ingestion of CC and CP increased rates of glucose appearance (R(a)) and disappearance (R(d)) compared with PP and PC at the onset of, and early during, SS (P < 0.05). However, late in SS, both glucose R(a) and R(d) were higher in CC and PC compared with other trials (P < 0.05). Although calculated rates of glucose oxidation were different when comparing the four trials (P < 0.05), total CHO oxidation and total fat oxidation were similar. Despite this, TT was improved in CC and PC compared with PP (P < 0.05). We conclude that 1) preexercise ingestion of CHO improves performance only when CHO ingestion is maintained throughout exercise, and 2) ingestion of CHO during 120 min of cycling improves subsequent TT performance.  相似文献   

8.
There has been recent interest in the potential performance and metabolic effects of carbohydrate ingestion during exercise lasting approximately 1 h. In this study, 13 well-trained men ingested in randomized order either a 6% glucose solution (CHO trial) or a placebo (Con trial) during exercise to exhaustion at 83+/-1% peak oxygen uptake. In six subjects, vastus lateralis muscle was sampled at rest, at 32 min, and at exhaustion, and in six subjects, glucose kinetics was determined by infusion of [6,6-(2)H]glucose in both trials and ingestion of [6-(3)H]glucose in the CHO trial. Of the 84 g of glucose ingested during exercise in the CHO trial, only 22 g appeared in the peripheral circulation. This resulted in a small (12 g) but significant (P<0.05) increase in glucose uptake without influencing carbohydrate oxidation, muscle glycogen use, or time to exhaustion (CHO: 68.1+/-4.1 min; Con: 69.6+/-5.5 min). Decreases in muscle phosphocreatine content and increases in muscle inosine monophosphate and lactate content during exercise were similar in the two trials. Although endogenous glucose production during exercise was partially suppressed in the CHO trial, it remained significantly above preexercise levels throughout exercise. In conclusion, only 26% of the ingested glucose appeared in the peripheral circulation. Glucose ingestion increased glucose uptake and partially reduced endogenous glucose production but had no effect on carbohydrate oxidation, muscle metabolism, or time to exhaustion during exercise at 83% peak oxygen uptake.  相似文献   

9.
The present study investigated potential sex-related differences in the metabolic response to carbohydrate (CHO) ingestion during exercise. Moderately endurance-trained men and women (n = 8 for each sex) performed 2 h of cycling at approximately 67% Vo(2 max) with water (WAT) or CHO ingestion (1.5 g of glucose/min). Substrate oxidation and kinetics were quantified during exercise using indirect calorimetry and stable isotope techniques ([(13)C]glucose ingestion, [6,6-(2)H(2)]glucose, and [(2)H(5)]glycerol infusion). In both sexes, CHO ingestion significantly increased the rates of appearance (R(a)) and disappearance (R(d)) of glucose during exercise compared with WAT ingestion [males: WAT, approximately 28-29 micromol x kg lean body mass (LBM)(-1) x min(-1); CHO, approximately 53 micromol x kg LBM(-1) x min(-1); females: WAT, approximately 28-29 micromol x kg LBM(-1) x min(-1); CHO, approximately 61 micromol x kg LBM(-1) x min(-1); main effect of trial, P < 0.05]. The contribution of plasma glucose oxidation to the energy yield was significantly increased with CHO ingestion in both sexes (from approximately 10% to approximately 20% of energy expenditure; main effect of trial, P < 0.05). Liver-derived glucose oxidation was reduced, although the rate of muscle glycogen oxidation was unaffected with CHO ingestion (males: WAT, 108 +/- 12 micromol x kg LBM(-1) x min(-1); CHO, 108 +/- 11 micromol x kg LBM(-1) x min(-1); females: WAT, 89 +/- 10 micromol x kg LBM(-1) x min(-1); CHO, 93 +/- 11 micromol x kg LBM(-1) x min(-1)). CHO ingestion reduced fat oxidation and lipolytic rate (R(a) glycerol) to a similar extent in both sexes. Finally, ingested CHO was oxidized at similar rates in men and women during exercise (peak rates of 0.70 +/- 0.08 and 0.65 +/- 0.06 g/min, respectively). The present investigation suggests that the metabolic response to CHO ingestion during exercise is largely similar in men and women.  相似文献   

10.
Six healthy male subjects exercised after an overnight fast for a fixed 3 min period at a workload equivalent to 100% of their maximal oxygen uptake ( ) on 3 separate occasions. The first test took place after subjects had consumed a mixed diet (43±3% carbohydrate (CHO), 41±5% fat and 16±3% protein) for 3 days, and was followed 2 h later by prolonged cycling to exhaustion at 77±3% to deplete muscle glycogen stores. Following this, subjects consumed a low CHO diet (4±1% CHO, 63±5% fat and 33±6% protein) for the remainder of the day and for the subsequent 2 days; on the morning of the next day a second high intensity test took place. Finally subjects followed a 3 day high CHO diet (73±7% CHO, 17±6% fat and 10±1% protein) before their last test. Acid-base status and selected metabolites were measured on arterialised-venous blood at rest prior to exercise and at intervals for 15 min following exercise. Prior to exercise, plasma pH and blood lactate concentration were higher (p<0.05) after the high CHO diet when compared with the low CHO diet. Pre-exercise plasma bicarbonate, blood PCO2 and blood base excess were all higher after the high (p<0.001,p<0.01,p<0.01 respectively) and normal (p<0.05,p<0.05,p<0.05 respectively) CHO diets when compared with the low CHO diet. During the post-exercise period there were no differences in plasma pH or blood base excess between the three experimental situations; plasma bicarbonate was higher (p<0.05) at 2 min post-exercise after the high CHO diet when compared with the low CHO diet; blood PCO2 was higher throughout the post-exercise period after the high CHO diet when compared with the low CHO diet and at 2 min post-exercise was higher after the normal CHO diet than after the low CHO diet (p<0.5). The post-exercise blood lactate concentration after the high CHO diet was at all times higher than the corresponding values recorded after the normal CHO diet and until 15 min post-exercise was significantly higher than the values recorded after the low CHO diet. The present experiment further substantiates the view that a pattern of dietary and exercise manipulation can significantly influence the acid-base status of the blood and by doing so may influence high intensity exercise performance.  相似文献   

11.
The purpose of this study was to investigate if a low mixed carbohydrate (CHO) plus moderate protein (PRO) supplement, provided during endurance exercise, would improve time to exhaustion (TTE) in comparison to a traditional 6% CHO supplement. Fourteen (n = 14) trained female cyclists and triathletes cycled on 2 separate occasions for 3 hours at intensities varying between 45 and 70% VO2max, followed by a ride to exhaustion at an intensity approximating the individual's ventilatory threshold average 75.06% VO2max. Supplements (275 mL) were provided every 20 minutes during exercise and were composed of a CHO mixture (1% each of dextrose, fructose, and maltodextrin) + 1.2% PRO (CHO + PRO) or 6% dextrose only (CHO). The TTE was significantly greater with CHO + PRO in comparison to with CHO (49.94 ± 7.01 vs. 42.36 ± 6.21 minutes, respectively, p < 0.05). Blood glucose was significantly lower during the CHO + PRO trial (4.07 ± 0.12 mmol · L(-1)) compared to during the CHO trial (4.47 ± 0.12 mmol · L(-1)), with treatment × time interactions occurring from 118 minutes of exercise until exhaustion (p < 0.05). Results from the present study suggest that the addition of a moderate amount of PRO to a low mixed CHO supplement improves endurance performance in women above that of a traditional 6% CHO supplement. Improvement in performance occurred despite CHO + PRO containing a lower CHO and caloric content. It is likely that the greater performance seen with CHO + PRO was a result of the CHO-PRO combination and the use of a mixture of CHO sources.  相似文献   

12.
The purpose of the present study was to investigate whether combined ingestion of two carbohydrates (CHO) that are absorbed by different intestinal transport mechanisms would lead to exogenous CHO oxidation rates of >1.0 g/min. Nine trained male cyclists (maximal O(2) consumption: 64 +/- 2 ml x kg body wt(-1) x min(-1)) performed four exercise trials, which were randomly assigned and separated by at least 1 wk. Each trial consisted of 150 min of cycling at 50% of maximal power output (60 +/- 1% maximal O(2) consumption), while subjects received a solution providing either 1.8 g/min of glucose (Glu), 1.2 g/min of glucose + 0.6 g/min of sucrose (Glu+Suc), 1.2 g/min of glucose + 0.6 g/min of maltose (Glu+Mal), or water. Peak exogenous CHO oxidation rates were significantly higher (P < 0.05) in the Glu+Suc trial (1.25 +/- 0.07 g/min) compared with the Glu and Glu+Mal trials (1.06 +/- 0.08 and 1.06 +/- 0.06 g/min, respectively). No difference was found in (peak) exogenous CHO oxidation rates between Glu and Glu+Mal. These results demonstrate that, when a mixture of glucose and sucrose is ingested at high rates (1.8 g/min) during cycling exercise, exogenous CHO oxidation rates reach peak values of approximately 1.25 g/min.  相似文献   

13.
This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle (n = 6) by (13)C magnetic resonance spectroscopy, and subsequent exercise capacity (n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 +/- 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 +/- 8 g) and sucrose (25 +/- 5 g) ingestion, both of which were different from control (P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery (r = 0.59-0. 79, P < 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity (r = 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 +/- 5, glucose: 40 +/- 5, and sucrose: 46 +/- 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.  相似文献   

14.
The clastogenic effect ofN-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in Chinese hamster ovary (CHO) cells and its modulation by Na2SeO3 and caffeine were studied by metaphase analysis of chromosome aberrations (CA) as well as by measuring the formation and repair of single-strand (ss) DNA breaks employing hydroxylapatite chromatography. Treatment of CHO cells with MNNG (1.25 or 2.5 × 10-5M) for 3 h caused CA in 11 and 19% of metaphases scored, respectively. Pretreatment of cells with Na2SeO3 (1–5 μg/mL) or caffeine (0.2–2.0 mg/mL) for 2 h resulted in a 2–3.5-fold increase of CA frequency. Addition of both modulators during the mutagen exposure tended to cause a slight inhibition of clastogenic activity of MNNG (1.25 × 10−5 M) or had no effect on CA number when MNNG was used at a concentration of 2.5 × 10−5M. Posttreatment of CHO cells with Na2SeO3 for 20 h after MNNG was ineffective in influencing the number of metaphases with CA, whereas, at these conditions, caffeine enhanced up to 6-7-fold the clastogenic activity of MNNG. Addition of both modulators during the whole experiment, 2 h pretreatment included, resulted in a further significant increase of CA frequency up to the total pulverization of chromosomes in all metaphases scored. The coclastogenic effect of caffeine was greater in this case. The enhancement of chromosome-damaging activity of MNNG by selenite and caffeine was better expressed when this carcinogen was applied at the higher concentration used. An additive coclastogenic effect was observed in CHO cells treated simultaneously with Na2SeO3 and caffeine plus MNNG. In addition, the treatment of CHO cells with MNNG (5 × 10−6 M) caused a rapid increase of ssDNA breaks number reaching maximal values after 30–45 min. However, up to 50–60% of MNNG-induced ssDNA breaks were repaired during the first 60–150 min after the mutagen exposure. The 2 h pretreatment of CHO cells with Na2SeO3 (2 μg/mL) or the addition of this trace element after MNNG had no effect on formation and repair of MNNG-induced ssDNA breaks. The coclastogenic effect of Na2SeO3 in CHO cells treated with MNNG was not directly linked to the induction and disappearance of ssDNA breaks measured by hydroxylapatite chromatography.  相似文献   

15.
Six men were studied during exercise to exhaustion on a cycle ergometer at 73% of VO2max following ingestion of glycerol, glucose or placebo. Five of the subjects exercised for longer on the glucose trial compared to the placebo trial (p less than 0.1; 108.8 vs 95.9 min). Exercise time to exhaustion on the glucose trial was longer (p less than 0.01) than on the glycerol trial (86.0 min). No difference in performance was found between the glycerol and placebo trials. The ingestion of glucose (lg X kg-1 body weight) 45 min before exercise produced a 50% rise in blood glucose and a 3-fold rise in plasma insulin at zero min of exercise. Total carbohydrate oxidation was increased by 26% compared to placebo and none of the subjects exhibited a fall in blood glucose below 4 mmol X 1-1 during the exercise. The ingestion of glycerol (lg X kg-1 body weight) 45 min before exercise produced a 340-fold increase in blood glycerol concentration at zero min of exercise, but did not affect resting blood glucose or plasma insulin levels; blood glucose levels were up to 14% higher (p less than 0.05) in the later stages of exercise and at exhaustion compared to the placebo or glucose trials. Both glycerol and glucose feedings lowered the magnitude of the rise in plasma FFA during exercise compared to placebo. Levels of blood lactate and alanine during exercise were not different on the 3 dietary treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.  相似文献   

17.
To test the effects of tyrosine ingestion with or without carbohydrate supplementation on endurance performance, nine competitive cyclists cycled at 70% peak oxygen uptake for 90 min under four different feeding conditions followed immediately by a time trial. At 30-min intervals, beginning 60 min before exercise, each subject consumed either 5 ml/kg body wt of water sweetened with aspartame [placebo (Pla)], polydextrose (70 g/l) (CHO), L-tyrosine (25 mg/kg body wt) (Tyr), or polydextrose (70 g/l) and L-tyrosine (25 mg/kg body wt) (CHO+Tyr). The experimental trials were given in random order and were carried out by using a counterbalanced double-blind design. No differences were found between treatments for oxygen uptake, heart rate, or rating of perceived exertion at any time during the 90-min ride. Plasma tyrosine rose significantly from 60 min before exercise to test termination (TT) in Tyr (means +/- SE) (480 +/- 26 micromol) and CHO+Tyr (463 +/- 34 micromol) and was significantly higher in these groups from 30 min before exercise to TT vs. CHO (90 +/- 3 micromol) and Pla (111 +/- 7 micromol) (P < 0.05). Plasma free tryptophan was higher after 90 min of exercise, 15 min into the endurance time trial, and at TT in Tyr (10.1 +/- 0.9, 10.4 +/- 0.8, and 12.0 +/- 0.9 micromol, respectively) and Pla (9.7 +/- 0.5, 10.0 +/- 0.3, and 11.7 +/- 0.5 micromol, respectively) vs. CHO (7.8 +/- 0.5, 8.6 +/- 0.5, and 9.3 +/- 0.6 micromol, respectively) and CHO+Tyr (7.8 +/- 0.5, 8.5 +/- 0.5, 9.4 +/- 0.5 micromol, respectively) (P < 0.05). The plasma tyrosine-to-free tryptophan ratio was significantly higher in Tyr and CHO+Tyr vs. CHO and Pla from 30 min before exercise to TT (P < 0.05). CHO (27.1 +/- 0.9 min) and CHO+Tyr (26.1 +/- 1.1 min) treatments resulted in a reduced time to complete the endurance time trial compared with Pla (34.4 +/- 2.9 min) and Tyr (32.6 +/- 3.0 min) (P < 0.05). These findings demonstrate that tyrosine ingestion did not enhance performance during a cycling time trial after 90 min of steady-state exercise.  相似文献   

18.
We studied the effects of preexercise mealcomposition on metabolic and performance-related variables duringendurance exercise. Eight well-trained cyclists (maximal oxygen uptake65.0 to 83.5 ml · kg1 · min1)were studied on three occasions after an overnight fast. They weregiven isoenergetic meals containing carbohydrate (CHO), protein (P),and fat (F) in the following amounts (g/70 kg body wt):high-carbohydrate meal, 215 CHO, 26 P, 3 F; high-fat meal, 50 CHO, 14 P, 80 F. On the third occasion subjects were studied after an overnightfast. Four hours after consumption of the meal, subjects startedexercise for 90 min at 70% of their maximal oxygen uptake, followed by a 10-km time trial. The high-carbohydrate meal compared with the high-fat meal resulted in significant decreases(P < 0.05) in blood glucose, plasmanonesterified fatty acids, plasma glycerol, plasmachylomicron-triacylglycerol, and plasma 3-hydroxybutyrate concentrations during exercise. This was accompanied by anincrease in plasma insulin (P < 0.01 vs. no meal), plasma epinephrine, and plasma growth hormoneconcentrations (each P < 0.05 vs.either of the other conditions) during exercise. Despite these large differences in substrate and hormone concentrations in plasma, substrate oxidation during the 90-min exercise period was similar inthe three trials, and there were no differences in performance on thetime trial. These results suggest that, although the availability offatty acids and other substrates in plasma can be markedly altered bydietary means, the pattern of substrate oxidation during enduranceexercise is remarkably resistant to alteration.

  相似文献   

19.
The present study was designed to determine postexercise muscle protein synthesis and whole body protein balance following the combined ingestion of carbohydrate with or without protein and/or free leucine. Eight male subjects were randomly assigned to three trials in which they consumed drinks containing either carbohydrate (CHO), carbohydrate and protein (CHO+PRO), or carbohydrate, protein, and free leucine (CHO+PRO+Leu) following 45 min of resistance exercise. A primed, continuous infusion of L-[ring-13C6]phenylalanine was applied, with blood samples and muscle biopsies collected to assess fractional synthetic rate (FSR) in the vastus lateralis muscle as well as whole body protein turnover during 6 h of postexercise recovery. Plasma insulin response was higher in the CHO+PRO+Leu compared with the CHO and CHO+PRO trials (+240 +/- 19% and +77 +/- 11%, respectively, P < 0.05). Whole body protein breakdown rates were lower, and whole body protein synthesis rates were higher, in the CHO+PRO and CHO+PRO+Leu trials compared with the CHO trial (P < 0.05). Addition of leucine in the CHO+PRO+Leu trial resulted in a lower protein oxidation rate compared with the CHO+PRO trial. Protein balance was negative during recovery in the CHO trial but positive in the CHO+PRO and CHO+PRO+Leu trials. In the CHO+PRO+Leu trial, whole body net protein balance was significantly greater compared with values observed in the CHO+PRO and CHO trials (P < 0.05). Mixed muscle FSR, measured over a 6-h period of postexercise recovery, was significantly greater in the CHO+PRO+Leu trial compared with the CHO trial (0.095 +/- 0.006 vs. 0.061 +/- 0.008%/h, respectively, P < 0.05), with intermediate values observed in the CHO+PRO trial (0.0820 +/- 0.0104%/h). We conclude that coingestion of protein and leucine stimulates muscle protein synthesis and optimizes whole body protein balance compared with the intake of carbohydrate only.  相似文献   

20.
Six endurance-trained men [peak oxygen uptake (V(O(2))) = 4.58 +/- 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 +/- 2% peak V(O(2)) in an environmental chamber maintained at 35 degrees C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 microCi [3-(3)H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (R(a)) in Con trial] and glucose disappearance (R(d)), were measured using a primed, continuous infusion of [6,6-(2)H]glucose, corrected for gut-derived glucose (gut R(a)) in the CHO trial. No differences in heart rate, V(O(2)), respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut R(a) after 30 and 50 min (16 +/- 5 micromol. kg(-1). min(-1)) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose R(d) was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 +/- 6.3 vs 34.6 +/- 3.8 micromol. kg(-1). min(-1), CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of approximately 1.0 g/min, increases glucose R(d) but does not blunt the rise in HGP during exercise in the heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号