首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ki67 is a nuclear protein expressed in proliferating cells, but not in quiescent or G(0)-arrested cells. Similar to the proliferating cell nuclear antigen and several other well-characterized molecules, Ki67 exhibits a repeating pattern of regulated expression and redistribution during the cell cycle, making it a useful marker for cell cycle phase. In addition to other structures labeled, concentrated foci may be observed in the nucleus and sometimes the cytoplasm. We observed that these Ki67 foci can be found at any stage of the endothelial cell cycle. They are not coincident with coiled bodies (CB), as determined in double-label immunofluorescence experiments with anti-Ki67 and antibodies to the CB marker protein pigpen. However, arrest of BPA47 endothelial cells in G(1) with amiloride + bumetanide induces colocalization of pigpen and Ki67 in 40% of cells exhibiting Ki67 foci. We conducted a series of experiments to examine the possibilities that pigpen was exported from CB and into unique, Ki67-containing foci or that Ki67 was imported into pigpen-containing CB. Our results showed us that although CB typically contain both coilin and pigpen, amiloride + bumetanide-induced G(1) arrest reconfigured the CB compartment into three populations of foci: one containing pigpen without coilin, the second containing coilin without pigpen, and a third containing both pigpen and coilin together. Furthermore, G(1) arrest resulted in Ki67 redistribution into both coilin- and pigpen-containing foci. The results suggest that under certain conditions, "resident" CB proteins can be differentially redistributed, and proteins not previously recognized as resident in CB can be driven into that compartment. Our observations underscore the fluid nature of CB. They demonstrate that previously reported heterogeneity in the CB compartment can be amplified by a specific experimental manipulation. This may be useful in future analyses of protein trafficking within the CB compartment and between CB and other cellular compartments. Finally, the redistribution of Ki67 into CB represents a new finding for a widely expressed but poorly understood molecule, one that may be useful in elucidating function.  相似文献   

2.
为了探讨PTEN基因在结肠癌中的作用以及其机制研究,MTT法检测结肠癌细胞细胞增殖;蛋白免疫印迹检测结肠癌细胞中Ki67蛋白的表达;DCFDA染色流式细胞仪检测结肠癌细胞中ROS水平。结果表明PTEN基因能明显抑制结肠癌细胞细胞增殖;PTEN基因能显著降低结肠癌细胞中Ki67蛋白的表达;细胞内ROS水平在PTEN基因处理组中明显高于空质粒结肠癌细胞组;NAC预处理可明显抑制PTEN基因抑制的细胞增殖;NAC预处理可显著抑制PTEN基因对结肠癌细胞Ki67蛋白的降低作用。PTEN基因能够抑制结肠癌细胞增殖并上调结肠癌细胞内ROS水平。  相似文献   

3.
Nestin is an intermediate filament protein that is known as a neural stem/progenitor cell marker. It is expressed in undifferentiated central nervous system (CNS) cells during development, but also in normal adult CNS and in CNS tumor cells. Additionally, nestin is expressed in endothelial cells (ECs) of CNS tumor tissues and of adult tissues that replenish by angiogenesis. However, the regulation of nestin expression in vascular endothelium has not been analyzed in detail. This study showed that nestin expression was observed in proliferating endothelial progenitor cells (EPCs), but not in mature ECs. In adherent cultured cells derived from bone marrow cells, EPCs that highly expressed nestin also expressed the endothelial marker CD31 and the proliferation marker Ki67. ECs cultured without growth factors showed attenuated nestin immunoreactivity as they matured. Transgenic mice that carried the enhanced green fluorescent protein under the control of the CNS-specific second intronic enhancer of the nestin gene showed no reporter gene expression in EPCs. This indicated that the mechanisms of nestin gene expression were different in EPCs and CNS cells. Immunohistochemistry showed nestin expression in neovascular cells from two distinct murine models. Our results demonstrate that nestin can be used as a marker protein for neovascularization. (J Histochem Cytochem 58:721–730, 2010)  相似文献   

4.
目的探讨补骨脂素对前列腺癌LNCaP-AI细胞增殖的影响,并初步探索其可能的作用机制。 方法不同浓度补骨脂素处理体外培养的前列腺癌LNCaP-AI细胞,采用CCK-8法检测各组的细胞增殖变化,Western blot法检测各组细胞Ki67蛋白表达,流式细胞术检测各组细胞周期的变化,实时定量RT-PCR法检测各组细胞雌激素受体β(ERβ)mRNA的表达。组间均数比较均采用单因素方差分析。 结果CCK-8检测结果显示,补骨脂素对LNCaP-AI细胞增殖的抑制呈浓度—时间依赖性增强。Western blot法、流式细胞术和实时定量RT-PCR检测结果分别显示,不同浓度补骨脂素(30,50,100 μg/ml)处理48 h后,随着药物浓度的增加,LNCaP-AI细胞的Ki67蛋白表达明显降低,分别为27.82±0.55、25.27±0.62、23.93±0.50和22.54?±0.59(F = 28.59,P < 0.01);G1期分别为72.14±0.5、74.57±1.22、78.12±0.92、79.36±0.49和80.6?±1.42(F = 38.26,P < 0.01);G2期分别为27.57±0.5、23.2±1.39、16.41±1.23、12.23±1.3和7.47±1.03(F = 216.63,P < 0.01)细胞均随之增多,而S期细胞则随之减少,分别为0.29±0.07、2.23?±0.32、5.47±0.44、8.41±0.95和11.93±0.57(F = 153.58,P?< 0.01);ERβ mRNA的表达量明显升高,分别为1±0 、2.197±0.225、4.573±0.346和6.590±0.334(F?= 264.09,P < 0.01)。 结论补骨脂素具有抑制前列腺癌LNCaP-AI细胞增殖和Ki67表达的作用,其机制可能与其将细胞阻滞于G1、G2期和上调ERβ mRNA的表达有关。  相似文献   

5.
The identification of cellular proteins involved in the control of cell proliferation in normal cells is essential for understanding the mechanism underlying growth regulation and cellular transformation. A nuclear protein termed Ki antigen with a relative mobility of 32,000 (Mr 32K) and which is recognized by SLE patient antisera has been identified in cells of human, bovine, and murine origin. Recently, cDNA clones for the bovine and human Ki antigens have been isolated using SLE patient antisera (T. Nikaido, et al., in preparation). The nucleotide sequence predicted a protein of 239 amino acids with a possible nuclear localization signal resembling that identified in SV40 T antigen and other nuclear proteins. Here we show that the expression of Ki antigen is regulated in the normal cell, but not in the transformed cell. Furthermore, in the K-ras temperature-sensitive mutant cell line, ts 371 normal rat kidney (NRK), Ki antigen expression increases several-fold at the permissive temperature relative to the nonpermissive temperature. These results suggest that expression of Ki antigen might be correlated with cellular transformation as well as with cell growth regulation.  相似文献   

6.
BACKGROUND: Understanding the mechanism of oligonucleotide (ON) uptake and cellular distribution is important for rational design of ON-based therapeutic strategies. The aim of this study was to investigate the possible relationship between cellular distribution of ON and the protein pigpen. METHODS: In vitro interaction of ON with the protein pigpen was detected using mass spectrometry. Cellular distribution of pigpen and co-localization of pigpen with ON was studied by fluorescence microscopy in endothelial YPEN and microglial N9 cells. RESULTS: Pigpen had similar distribution patterns in endothelial YPEN and microglial N9 cells. Pigpen was localized to the cytoplasm of both cell types. In addition, pigpen distributed to nuclei, excluding the nucleoli, and concentrated along the nuclear membrane and plasma membrane. Intensely stained foci were only observed in the nucleus and cytoplasm of YPEN cells. Although co-localization of pigpen with phosphorothioate (PS) ON was not observed for the first hour after ON uptake, co-localization was observed 8 h later. DISCUSSION: These data suggest that pigpen binds therapeutic ON and thus might contribute to ON cellular distribution.  相似文献   

7.
目的:探讨人类泛素结合酶E2T(Ubiquitin-conjugating enzyme E2T,UBE2T)基因对结肠细胞增殖和凋亡的影响。方法:体外培养人正常结直肠粘膜细胞FHC,采用将UBE2T基因慢病毒质粒转染至FHC细胞48 h后,通过MTT法检测细胞增殖情况,western blotting检测细胞中增殖相关蛋白UBE2T蛋白、Ki67、促凋亡蛋白Bax和抗凋亡蛋白Bcl-2的表达,流式细胞术检测细胞凋亡率。结果:与转染空质粒的FHC细胞相比,UBE2T基因慢病毒质粒转染FHC细胞48 h后,细胞增殖能力显著上调(P0.05),UBE2T蛋白明显增加,Ki67的表达明显增加(P0.05),细胞凋亡率显著降低(P0.05),且Bax的表达明显下调而Bcl-2的表达上调(P0.05)。结论:UBE2T基因能够促进正常结肠粘膜细胞的增殖,并抑制其凋亡。  相似文献   

8.
The monoclonal antibody Ki-67 detects a nuclear antigen that is present only in proliferating cells. The aim of the present investigation was to clarify whether the Ki-67 nuclear antigen is restricted in its expression to certain phases of the cell cycle. All experiments consistently showed that the Ki-67 nuclear antigen is present in S, G2, and M phase, but is absent in G0. However, the results concerning Ki-67 antigen expression in G1 phase varied: cells passing the early events of mitogen triggered transition from G0 to G1, i.e., G1T and first G1A, lacked the Ki-67 nuclear antigen, whereas G1 cells after mitosis were constantly Ki-67-positive. This result suggests that after mitosis cells might not follow the same metabolic pathways as G0 cells do when entering G1 for the first time. Therefore, we suggest that the early stages of mitogen stimulation represent initial sequences of proliferation and not parts of the cell cycle. Because our data show that the Ki-67 nuclear antigen is present throughout the cell cycle, immunostaining with monoclonal antibody Ki-67 provides a reliable means of rapidly evaluating the growth fraction of normal and neoplastic human cell populations.  相似文献   

9.
Aberrant pulmonary epithelial and mesenchymal cell proliferation occurs when newborns are treated with oxygen and ventilation to mitigate chronic lung disease. Because the cyclin-dependent kinase inhibitor p21 inhibits proliferation of oxygen-exposed cells, its expression was investigated in premature baboons delivered at 125 days (67% of term) and treated with oxygen and ventilation pro re nata (PRN) for 2, 6, 14, and 21 days. Approximately 5% of all cells expressed p21 during normal lung development of which <1% of these cells were pro-surfactant protein (SP)-B-positive epithelial cells. The percentage of cells expressing p21 increased threefold in all PRN-treated animals, but different cell populations expressed it during disease progression. Between 2 and 6 days of treatment, p21 was detected in 30-40% of pro-SP-B cells. In contrast, only 12% of pro-SP-B cells expressed p21 by 14 and 21 days of treatment, by which time p21 was also detected in mesenchymal cells. Even though increased epithelial and mesenchymal cell proliferation occurs during disease progression, those cells expressing p21 did not also express the proliferative marker Ki67. Thus two populations of epithelial and mesenchymal cells can be identified that are either expressing Ki67 and proliferating or expressing p21 and not proliferating. These data suggest that p21 may play a role in disorganized proliferation and alveolar hypoplasia seen in newborn chronic lung disease.  相似文献   

10.
Airway epithelium alterations, including squamous cell metaplasia, characterize smokers with and without chronic obstructive pulmonary disease (COPD). The p21 regulates cell apoptosis and differentiation and its role in COPD is largely unknown. Molecules regulating apoptosis (cytoplasmic p21, caspase-3), cell cycle (nuclear p21), proliferation (Ki67/PCNA), and metaplasia (survivin) in central airways from smokers (S), smokers-COPD (s-COPD) and non-smokers (Controls) were studied. The role of cigarette smoke extracts (CSE) in p21, survivin, apoptosis (caspase-3 and annexin-V binding) and proliferation was assessed in a bronchial epithelial cell line (16HBE). Immunohistochemistry, image analysis in surgical samples and flow-cytometry and carboxyfluorescein succinimidyl ester proliferative assay in 16HBE with/without CSE were applied. Cytoplasmic and nuclear p21, survivin, and Ki67 expression significantly increased in large airway epithelium in S and in s-COPD in comparison to Controls. Caspase-3 was similar in all the studied groups. p21 correlated with epithelial metaplasia, PCNA, and Ki67 expression. CSE increased cytoplasmic p21 and survivin expression but not apoptosis and inhibited the cell proliferation in 16HBE. In large airway epithelium of smokers with and without COPD, the cytoplasmic p21 inhibits cell apoptosis, promotes cell proliferation and correlates with squamous cell metaplasia thus representing a potential pre-oncogenic hallmark.  相似文献   

11.
The Menkes copper-transporting ATPase (Atp7a) has dual roles in mammalian enterocytes: pumping copper into the trans-Golgi network (to support cuproenzyme synthesis) and across the basolateral membrane (to deliver dietary copper to the blood). Atp7a is strongly induced in the rodent duodenum during iron deprivation, suggesting that copper influences iron homeostasis. To investigate this possibility, Atp7a was silenced in rat intestinal epithelial (IEC-6) cells. Irrespective of its influence on iron homeostasis, an unexpected observation was made in the Atp7a knockdown (KD) cells: the cells grew slower (∼40% fewer cells at 96 h) and were larger than negative-control shRNA-transfected cells. Lack of Atp7a activity thus perturbed cell cycle control. To elucidate a possible molecular mechanism, expression of two important cell cycle control proteins was assessed. Cyclin D1 (CD1) protein expression increased in Atp7a KD cells whereas proliferating-cell nuclear antigen (PCNA) expression was unaltered. Increased CD1 expression is consistent with impaired cell cycle progression. Expression of additional cell proliferation marker genes (p21 and Ki67) was also investigated; p21 expression increased, whereas Ki67 decreased, both consistent with diminished cell growth. Further experiments were designed to determine whether increased cellular copper content was the trigger for the altered growth phenotype of the Atp7a KD cells. Copper loading, however, did not influence the expression patterns of CD1, p21 or Ki67. Overall, these findings demonstrate that Atp7a is required for normal proliferation of IEC-6 cells. How Atp7a influences cell growth is unclear, but the underlying mechanism could relate to its roles in intracellular copper distribution or cuproenzyme synthesis.  相似文献   

12.
建立胎鼠肺泡II型上皮细胞(AECII)与肺成纤维细胞(LF)共培养模型,观察与LF共培养下AECII的生物学特性。倒置相差显微镜观察AECII形态和基本生长情况;RT-PCR和流式细胞术分别检测肺泡表面活性蛋白-C(SP-C)、水通道蛋白5(AQP5)mRNA及蛋白质表达;流式细胞术检测细胞周期及Ki67表达。结果显示,与LF共培养时,AECII能较好地保留其细胞形态,SP-CmRNA及其蛋白质表达明显增加,而AQP5mRNA及其蛋白质表达则明显减少;LF促进AECII增殖,使G2/M、S期细胞及表达Ki67 细胞的比率明显增多。结果提示,AECII与LF共培养时,能更好地保留其细胞形态、分化及增殖特性。  相似文献   

13.
The potential for encoding information in carbohydrate (CHO) structures has long been recognized. Selective CHO-binding proteins known as lectins and the biological events they mediate are well known. However, many lectins were originally discovered for biological activities other than saccharide binding, and only subsequently was it realized that one or more of their key functions were mediated by specific CHO recognition. Our previous observations suggested that the nuclear protein pigpen had an affinity for CHO structures. This would represent a new attribute for proteins of the EWS (Ewing's sarcoma) family, of which pigpen is a member. In this study we demonstrate that a CHO-binding domain resides in the C-terminus of the molecule and can be preferentially inhibited by saccharides, most notably N-acetyl-d-galactosamine (GalNAc) and the GalNAc-containing polysaccharide, chondroitin sulfate. Ligand blotting experiments were subsequently performed with fractionated, [(3)H]galactose-labeled cells to demonstrate the presence of chondroitin sulfate-inhibitable endogenous CHO ligands for pigpen in endothelial nuclei. Finally, microinjection of polysaccharide competitor into the nucleus of cultured endothelial cells resulted in a loss of pigpen focal accumulations, suggesting that the CHO-binding activity may be instrumental in subcellular localization of the protein. In summary, our results show ligand preference and domain specificity for pigpen's CHO affinity and provide initial evidence for physiological ligands and function. They may also shed new light on the mechanisms of oncogenic transformation involving EWS proteins.  相似文献   

14.
Short hairpin RNAs (shRNAs) transcribed by.RNA polymerase Ⅲ promoters can triggersequence-selective gene silencing in mammalian cells.By virtue of their excellent function in knocking downexpression of cancer-associated genes,shRNAs could be used as new therapeutic agents for cancer.Asoverexpression of Ki67 in renal cancer has been correlated to a more aggressive tumor phenotype,inhibitionof Ki67 protein expression by means of shRNAs seems to be a promising approach for the therapy of renalcancer.In this study,we constructed an expression plasmid encoding shRNAs against the Ki67 gene,namedpSilencerKi67,and transfected it into human renal carcinoma cells.The pSilencerKi67 was shown to signifi-cantly knock down the expression of the Ki67 gene in human renal carcinoma cells,resulting in inhibitingproliferation and inducing apoptotic cell death that can be maintained for at least 6d.These findings offer thepromise of using vector-based shRNAs against Ki67 in renal cancer gene therapy.  相似文献   

15.
Impaired endothelial cell proliferation has been proposed to be an early, critical defect contributing to the development of atherosclerosis. Recent studies show that high plasma tumor necrosis factor (TNF)-alpha levels and low serum ascorbic acid (AA) levels correlate with atherosclerosis severity. Additionally, AA has been reported to have potential beneficial effects in preventing atherosclerosis. Based on these studies, we investigated the role of AA (< or =1mM) on TNF-alpha-mediated vascular endothelial cell growth inhibition in vitro. In accordance with previous reports, we found that TNF-alpha alone inhibited endothelial cell proliferation. Further studies revealed that AA alone enhanced endothelial cell proliferation and that AA blocked endothelial cell growth inhibition induced by TNF-alpha. By contrast, we observed no effect of AA on endothelial cell activation or nuclear entry of nuclear factor-kappaB in response to TNF-alpha. The protective effect of AA on endothelial cell proliferation was not simply the result of its antioxidant activity but did correlate with collagen IV expression by endothelial cells. AA pre-treatment of proliferating endothelial cells promoted retinoblastoma protein (Rb) phosphorylation and decreased p53 levels when compared to untreated cells. Furthermore, the addition of AA to TNF-alpha-treated proliferating endothelial cells blocked both the inhibition of retinoblastoma protein phosphorylation and enhanced p53 expression induced by TNF-alpha. Consistent with these results, we found that AA protects endothelial cells against TNF-alpha-induced apoptosis. These studies highlight the potential therapeutic role of AA in promoting endothelial cell proliferation during inflammatory conditions, such as atherosclerosis and cardiovascular disease.  相似文献   

16.
17.
Xiao Z  Yang M  Fang L  Lv Q  He Q  Deng M  Liu X  Chen X  Chen M  Xie X  Hu J 《Cell biology international》2012,36(7):625-633
Extracellular nucleotides mediate a wide range of physiological effects by interacting with plasma membrane P2 purinergic receptors. P2 receptors are expressed in certain kinds of stem cells, and function to induce cytokine expression and to modulate cell proliferation. We have analysed the expression and the function of P2 receptors in human umbilical cord blood-derived EPCs (endothelial progenitor cells). EPCs expressed P2X4,6,7 and P2Y2,4,11,13,14 receptors and extracellular ATP inhibited EPCs proliferation. As in a previous study, EPCs expressed functional TLR4 (Toll-like receptor 4) and activation of TLR4 by LPS (lipopolysaccharide) evoked a pro-inflammatory immune response. When human EPCs were stimulated with LPS and nucleotides, ATP or UTP inhibited the expression of pro-inflammatory cytokines including MCP-1 (monocyte chemoattractant protein-1), IFNα (interferon α), TNFα (tumour necrosis factor α) and adhesion molecule VCAM-1 (vascular cell adhesion molecule 1) induced by LPS. ATP and UTP also down-regulated the gene expression of TLR4, CD14 and MyD88 (myeloid differentiation factor 88), a TLR adaptor molecule, and protein expression of CD14 and MyD88. Moreover, the phosphorylation of NF-κB (nuclear factor κB) p65 induced by TLR4 activation was inhibited partly by ATP or UTP at concentrations of 1-5 μM. These results suggest that extracellular nucleotides negatively regulate EPCs proliferation and TLR4 signalling.  相似文献   

18.
Vitamin k epoxide reductase: a protein involved in angiogenesis   总被引:1,自引:0,他引:1  
Vitamin K epoxide reductase (VKOR) is a newly identified protein which has been reported to convert the epoxide of vitamin K back to vitamin K, a cofactor essential for the posttranslational gamma-carboxylation of several blood coagulation factors. We found that the gene is expressed ubiquitously including vascular endothelial cells, smooth muscle cells, fibroblasts and cardiomyocytes, and is overexpressed in 11 tumor tissues on microarray. Stable transfection of VKOR cDNA into tumor cell line A549 and H7402 did not promote the cell proliferation. These results promoted us to hypothesize that VKOR may also be involved in angiogenesis. To test this hypothesis, the expression of VKOR was studied in different vascular cells in developmental and pathologic heart tissues. The effects of overexpression and suppressing expression of VKOR on endothelial cell proliferation, migration, adhesion, and tubular network formation were explored. We found that VKOR expression in arteries was prominent in vascular endothelial cells and was high in the ventricular aneurysm tissue of human heart and human fetal heart. In vitro studies showed that overexpression of VKOR slightly but significantly stimulated human umbilical vein endothelial cell proliferation (by 120%), migration (by 118%), adhesion (by 117%), as well as tubular network formation. Antisense to VKOR gene inhibited the proliferation (by 67%), migration (by 64%), adhesion (by 50%), and tubular network formation. Our findings support the impact of VKOR in the process of angiogenesis; hence, the molecule may have a potential application in cardiovascular disease and cancer therapy.  相似文献   

19.
D-type cyclins are important regulatory proteins of the G1/S phase of the cell cycle however, their specific functions are only partially understood. We show that silencing of individual D-type cyclins has no effect on the proliferation and morphology of Immortalized non-tumorigenic human epidermal (HaCaT) cells, while double and triple D cyclin silencing results in the failure of the cytokinesis leading to the appearance of large multinucleated cells. Both CDC20 and Ki67 mRNA is downregulated in these cells. Ki67 mRNA silenced cells show similar multinucleated cellular phenotype as double or triple D cyclin silenced cells without affecting D cyclin expression, suggesting that Ki67 is necessary for normal G2/M transition. Our data have revealed that cyclin D1 may have a leading role in G1/S phase regulation and suggest an incomplete functional overlap among D cyclins. Our results indicate that beside their well-known functions during the G0-G1/S phase, D-type cyclins play a pivotal role in the regulation of mitosis via influencing Ki67 expression in a downstream manner probably through E2F1 activation in HaCaT cells.  相似文献   

20.
Sensitive to apoptosis gene (SAG) protein is a redox-inducible protein that protects cells against apoptosis induced by redox agents. In this study, we observed effects of SAG on cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus (DG) using Ki67 and doublecortin (DCX), respectively. For easy penetration into neurons, Tat-SAG expression vector was constructed by ligation with SAG and expression vector, Tat, in-frame with six histidine open-reading frames to generate the expression vector, and cloned into E. coli DH5α cells. One or 5?mg/kg Tat-SAG fusion protein (Tat-SAG) was intraperitoneally administered to mice once a day for 3?weeks. The administration of Tat-SAG significantly increased the number of 5-bromodeoxyuridine positive cells, Ki67 positive cells and DCX immunoreactive neuroblast in the mouse DG: Especially, in the 5?mg/kg Tat-SAG-treated mice, DCX positive neuroblasts showed a well-developed arborization of tertiary dendrites in the DG. On the other hand, we examined that the administration of Tat-SAG significantly reduced the DNA damage and lipid peroxidation judging from 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal immunohistochemistry: The decrease was much more distinct in the 5?mg/kg Tat-SAG-treated mice than 1?mg/kg Tat-SAG-treated mice. This result suggests that SAG significantly increases cell proliferation, neuroblast differentiation and oxidative stress in normal states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号