首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Falk S  Palmqvist K 《Plant physiology》1992,100(2):685-691
The photosynthetic light-response curve, the relative amounts of the different photosystem II (PSII) units, and fluorescence quenching were altered in an adaptive manner when CO2-enriched wild-type Chlamydomonas reinhardtii cells were transferred to low levels of CO2. This treatment is known to result in the induction of an energy-dependent CO2-concentrating mechanism (CCM) that increases the internal inorganic carbon concentration and thus the photosynthetic CO2 utilization efficiency. After 3 to 6 h of low inorganic carbon treatment, several changes in the photosynthetic energy-transducing reactions appeared and proceeded for about 12 h. After this time, the fluorescence parameter variable/maximal fluorescence yield and the amounts of both PSIIα and PSIIβ (secondary quinone electron acceptor of PSII-reducing) centers had decreased, whereas the amount of PSIIβ (secondary quinone electron acceptor of PSII-nonreducing) centers had increased. The yield of noncyclic electron transport also decreased during the induction of the CCM, whereas both photochemical and nonphotochemical quenching of PSII fluorescence increased. Concurrent with these changes, the photosynthetic light-utilization efficiency also decreased significantly, largely attributed to a decline in the curvature parameter θ, the convexity of the photosynthetic light-response curve. Thus, it is concluded that the increased CO2 utilization efficiency in algal cells possessing the CCM is maintained at the cost of a reduced light utilization efficiency, most probably due to the reduced energy flow through PSII.  相似文献   

2.
Chlamydomonas reinhardtii cells were grown in high (5% v/v) or low (0.03% v/v) CO2 concentration in air. O2 evolution, HCO3 assimilation, and glycolate excretion were measured in response to O2 and CO2 concentration. Both low- and high-CO2-grown cells excrete glycolate. In low-CO2-grown cells, however, glycolate excretion is observed only at much lower CO2 concentrations in the medium, as compared with high-CO2-adapted cells. It is postulated that the activity of the CO2-concentrating mechanism in low-CO2-grown cells is responsible for the different dependence of glycolate excretion on external CO2 concentration in low- versus high-CO2-adapted cells.  相似文献   

3.
Dai Z  Ku M  Edwards GE 《Plant physiology》1993,103(1):83-90
Despite previous reports of no apparent photorespiration in C4 plants based on measurements of gas exchange under 2 versus 21% O2 at varying [CO2], photosynthesis in maize (Zea mays) shows a dual response to varying [O2]. The maximum rate of photosynthesis in maize is dependent on O2 (approximately 10%). This O2 dependence is not related to stomatal conductance, because measurements were made at constant intercellular CO2 concentration (Ci); it may be linked to respiration or pseudocyclic electron flow. At a given Ci, increasing [O2] above 10% inhibits both the rate of photosynthesis, measured under high light, and the maximum quantum yield, measured under limiting light ([phi]CO2). The dual effect of O2 is masked if measurements are made under only 2 versus 21% O2. The inhibition of both photosynthesis and [phi]CO2 by O2 (measured above 10% O2) with decreasing Ci increases in a very similar manner, characteristically of O2 inhibition due to photorespiration. There is a sharp increase in O2 inhibition when the Ci decreases below 50 [mu]bar of CO2. Also, increasing temperature, which favors photorespiration, causes a decrease in [phi]CO2 under limiting CO2 and 40% O2. By comparing the degree of inhibition of photosynthesis in maize with that in the C3 species wheat (Triticum aestivum) at varying Ci, the effectiveness of C4 photosynthesis in concentrating CO2 in the leaf was evaluated. Under high light, 30[deg]C, and atmospheric levels of CO2 (340 [mu]bar), where there is little inhibition of photosynthesis in maize by O2, the estimated level of CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the bundle sheath compartment was 900 [mu]bar, which is about 3 times higher than the value around Rubisco in mesophyll cells of wheat. A high [CO2] is maintained in the bundle sheath compartment in maize until Ci decreases below approximately 100 [mu]bar. The results from these gas exchange measurements indicate that photorespiration occurs in maize but that the rate is low unless the intercellular [CO2] is severely limited by stress.  相似文献   

4.
5.
Davies DD  Patil KD 《Plant physiology》1973,51(6):1142-1144
Contrary to earlier reports, CO2 fixation by extracts of Chlamydomonas is inhibited by glutamate and aspartate. These amino acids and some organic acids are shown to be inhibitors of phosphoenolpyruvate carboxylase. Inorganic phosphate is shown to activate CO2 fixation, but there is a time lag before inorganic phosphate exerts its full activating effect.  相似文献   

6.
The rate of C14O2 incorporation into amino acids and organic acids in C. reinhardtii is a function of particular stages of development in the life cycle of the alga. Gametic differentiation in nitrogen free medium is accompanied by a reduced rate of amino acid synthesis and a higher synthesis of organic acids than that found for the cells undergoing vegetative development. The addition of ammonium to differentiating gametes results in an increased synthesis of amino acids, particularly the basic ones, and a concomitant reduction in organic acid synthesis.  相似文献   

7.
Dai Z  Ku M  Edwards GE 《Plant physiology》1995,107(3):815-825
The effect of O2 on photosynthesis was determined in maize (Zea mays) leaves at different developmental stages. The optimum level of O2 for maximum photosynthetic rates was lower in young and senescing tissues (2-5 kPa) than in mature tissue (9 kPa). Inhibition of photosynthesis by suboptimal levels of O2 may be due to a requirement for functional mitochondria or to cyclic/pseudocyclic photophosphorylation in chloroplasts; inhibition by supraoptimal levels of O2 is considered to be due to photorespiration. Analysis of a range of developmental stages (along the leaf blade and at different leaf ages and positions) showed that the degree of inhibition of photosynthesis by supraoptimal levels of O2 increased rapidly once the ribulose-1,5-bisphosphate carboxylase/oxygenase and chlorophyll contents were below a critical level and was similar to that of C3 plants. Tissue having a high sensitivity of photosynthesis to O2 may be less effective in concentrating CO2 in the bundle sheath cells due either to limited function of the C4 cycle or to higher bundle sheath conductance to CO2. An analysis based on the kinetic properties of ribulose-1,5-bisphosphate carboxylase/oxygenase was used to predict the maximum CO2 level concentrated in bundle sheath cells at a given degree of inhibition of photosynthesis by supraoptimal levels of O2.  相似文献   

8.
The effect of carbonic anhydrase (CA) on time courses of photosynthetic14C incorporation in the presence of 14CO2 or NaH14CO3 was studiedwith cells of Chlamydomonas reinhardtii which had been grownunder ordinary air (low-CO2 cells) or air enriched with 4% CO2(high-CO2 cells). Experimental data obtained at 20°C andpH 8.0 suggested that the major form of inorganic carbon utilizedby high-CO2 cells was CO2, while that utilized by low-CO2 cellswas HCO3. The cell suspension showed CA activity which was comparableto that observed in the sonicate of cells. Both activities werehigher in low-CO2 cells than in high-CO2 cells. The mechanism by which HCO3 is utilized by low-CO2 cellsof C. reinhardtii is discussed. 3Present address: Department of Biology, Faculty of Science,University of Niigata, Niigata 950-21, Japan. (Received August 4, 1982; Accepted January 19, 1983)  相似文献   

9.
Time-courses of 14CO2-fixation and of enzyme activities involvedin photorespiration and photosynthesis were determined duringthe life span of cotyledons from sunflower seedlings (Helianthusannuus L.). Glycolate formation in vivo was estimated from theresults of combined labelling and inhibitor experiments. NADPH-glyceraldehyde-3-phosphatedehydrogenase, NADPH-glyoxylate reductase and chlorophyll werewell correlated with the time-course of 14CO2-fixation (photosynthesis).There was, however, a considerable discrepancy between the developmentalsequence of photosynthesis and that of both ribulose-l,5-bisphosphatecarboxylase and glycolate oxidase. Furthermore, time-coursesof glycolate oxidase activity in vitro and of glycolate formationin vivo differed significantly. Therefore, the use of glycolateoxidase as a marker for the activity of photorespiration ingreening sunflower cotyledons may be questionable. Results from14CO2-labelling experiments with cotyledons treated with theglycolate oxidase inhibitor 2-hydroxy butynoic acid suggestthat glycolate formation relative to CO2-fixation is reducedin senescent cotyledons. Key words: Development, glycolate oxidase, photorespiration, ribulose-l,5-bisphosphate carboxylase, oxygenase  相似文献   

10.
A Chlamydomonas reinhardtii mutant has been isolated that cannot grow photoautotrophically on low CO2 concentrations but can grow on elevated CO2. In a test cross, the high CO2-requirement for growth showed a 2:2 segregation. This mutant, designated CIA-5, had a phenotype similar to previously identified mutants that were defective in some aspect of CO2 accumulation. Unlike previously isolated mutants, CIA-5 did not have detectable levels of the periplasmic carbonic anhydrase, an inducible protein that participates in the acquisition of CO2 by C. reinhardtii. CIA-5 also did not accumulate inorganic carbon to levels higher than could be accounted for by diffusion. This mutant strain did not synthesize any of the four polypeptides preferentially made by wild type C. reinhardtii when switched from an environment containing elevated CO2 levels to an environment low in CO2. It is concluded that this mutant fails to induce the CO2 concentrating system and is incapable of adapting to low CO2 conditions.  相似文献   

11.
Certain Chlamydomonas reinhardtii mutants deficient in photosystem I due to defects in psaA mRNA maturation have been reported to be capable of CO2 fixation, H2 photoevolution, and photoautotrophic growth (Greenbaum, E., Lee, J. W., Tevault, C. V., Blankinship, S. L. , and Mets, L. J. (1995) Nature 376, 438-441 and Lee, J. W., Tevault, C. V., Owens, T. G.; Greenbaum, E. (1996) Science 273, 364-367). We have generated deletions of photosystem I core subunits in both wild type and these mutant strains and have analyzed their abilities to grow photoautotrophically, to fix CO2, and to photoevolve O2 or H2 (using mass spectrometry) as well as their photosystem I content (using immunological and spectroscopic analyses). We find no instance of a strain that can perform photosynthesis in the absence of photosystem I. The F8 strain harbored a small amount of photosystem I, and it could fix CO2 and grow slowly, but it lost these abilities after deletion of either psaA or psaC; these activities could be restored to the F8-psaADelta mutant by reintroduction of psaA. We observed limited O2 photoevolution in mutants lacking photosystem I; use of 18O2 indicated that this O2 evolution is coupled to O2 uptake (i.e. respiration) rather than CO2 fixation or H2 evolution. We conclude that the reported instances of CO2 fixation, H2 photoevolution, and photoautotrophic growth of photosystem I-deficient mutants result from the presence of unrecognized photosystem I.  相似文献   

12.
Acclimation of the green alga Chlamydomonas reinhardtii to limiting environmental CO2 induced specific protein phosphorylation at the surface of photosynthetic thylakoid membranes. Four phosphopeptides were identified and sequenced by nanospray quadrupole TOF MS from the cells acclimating to limiting CO2. One phosphopeptide originated from a protein that has not been annotated. We found that this unknown expressed protein (UEP) was encoded in the genome of C. reinhardtii. Three other phosphorylated peptides belonged to Lci5 protein encoded by the low-CO2-inducible gene 5 (lci5). The phosphorylation sites were mapped in the tandem repeats of Lci5 ensuring phosphorylation of four serine and three threonine residues in the protein. Immunoblotting with Lci5-specific antibodies revealed that Lci5 was localized in chloroplast and confined to the stromal side of the thylakoid membranes. Phosphorylation of Lci5 and UEP occurred strictly at limiting CO2; it required reduction of electron carriers in the thylakoid membrane, but was not induced by light. Both proteins were phosphorylated in the low-CO2-exposed algal mutant deficient in the light-activated protein kinase Stt7. Phosphorylation of previously unknown basic proteins UEP and Lci5 by specific redox-dependent protein kinase(s) in the photosynthetic membranes reveals the early response of green algae to limitation in the environmental inorganic carbon.  相似文献   

13.
Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3–15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6–3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.

Algal chloroplast proteins undergo localization changes in response to CO2 concentrations, reflecting their physiological function in survival under fluctuating CO2 environments.  相似文献   

14.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

15.
16.
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

17.
In response to high CO2 environmental variability, green algae, such as Chlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2 concentration. Genetic and physiological studies demonstrated that at least three CO2 physiological states, a high CO2 (0.5–5% CO2), a low CO2 (0.03–0.4% CO2) and a very low CO2 (< 0.02% CO2) state, exist in Chlamydomonas. To acclimate in the low and very low CO2 states, Chlamydomonas induces a sophisticated strategy known as a CO2‐concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2 environments. Active uptake of Ci from the environment is a fundamental aspect in the Chlamydomonas CCM, and consists of CO2 and HCO3 uptake systems that play distinct roles in low and very low CO2 acclimation states. LCI1, a putative plasma membrane Ci transporter, has been linked through conditional overexpression to active Ci uptake. However, both the role of LCI1 in various CO2 acclimation states and the species of Ci, HCO3 or CO2, that LCI1 transports remain obscure. Here we report the impact of an LCI1 loss‐of‐function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2 uptake in low CO2, especially above air‐level CO2, and that any LCI1 role in very low CO2 is minimal.  相似文献   

18.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号