首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uninucleate microspores of Lilium longiflorum from differentlengths of buds were explanted under various culture conditions,and their behavior was studied during subsequent cultures. Thenutritional conditions permitting survival of microspores wererelatively simple, but most of the living cells showed cytologicalabnormalities. A typical type of cell division could only beinduced in explanted microspores at the late G1 phase of thecell cycle. For the normal development of microspores in culture,the microspore environment with respect to moisture was an importantfactor. The rate of the mitotic cycle of the cultured microsporeswas essentially the same as that for microspores grown undergreenhouse conditions. 1Department of Medicine, Kochi Medical School, Nangoku, Kochi781-51, Japan. (Received March 25, 1980; )  相似文献   

2.
Experiments were aimed at obtaining a culture system for studyof the differentiation of meiotic cells, and techniques weresuccessfully established for the in vitro culture of premeioticmicrosporocytes isolated from various species of liliaceousplants. The problems concerning the culture system were whethermicrosporocytes could be isolated at each stage of the premeioticinterphase and whether they would survive and undergo cell divisionat high frequencies in culture media. In the species tested,the range of stages permitting isolation from anthers and thecytological features of the extruded cells were examined insome detail. Culture conditions are defined for the survivaland the induction of cell division in explanted cells, and somefactors influencing these frequencies are discussed. Explantedcells at premeiotic Gi and S phases underwent a mitotic division,whereas once cells entered the leptotene stage they completedmeiosis. Cells explanted at the G2 phase showed abnormal typesof meiotic division. The culture system developed makes possiblecytological, physiological and biochemical analyses of premeioticcells cultured under various conditions. (Received September 5, 1980; Accepted November 5, 1980)  相似文献   

3.
Cell division synchrony was induced in tobacco {Nicotiana tabacum)cultured cells by several treatments. Very high synchrony throughouttwo cell cycles was induced by aphidicolin treatment (inhibitorof DNA polymerase , 10 µg/ml) and by treatment with lowtemperature (4°C) and hydroxyurea (50 µg/ml). Themitotic index reached its maximum (52% and 40% in aphidicolinand hydroxyurea treatments, respectively) at 11 h after removalof the added chemical. During the treatments, the cells werearrested in the G1/S phase of the cell cycle. In the aphidicolin-inducedsystem, incorporation of 14C-thymidine confirmed that DNA synthesiswas started immediately after removal of the chemical. The aphidicolin-induced synchronous cells were used to studythe contents of butanol-soluble cytokinins during the cell cycle.Cytokinin contents increased conspicuously at the G2/M boundary. 1Present address: Department of Biology, Otsuma Women's University,Chiyodaku, Tokyo 102, Japan. (Received May 14, 1985; Accepted November 8, 1985)  相似文献   

4.
Acute cessation of flow (ischemia) leads to depolarization of the endothelial cell (EC) membrane mediated by KATP channels and followed by production of reactive oxygen species (ROS) from NADPH oxidase. We postulated that ROS are a signal for initiating EC proliferation associated with the loss of shear stress. Flow cytometry was used to identify proliferating CD31-positive pulmonary microvascular endothelial cells (mPMVECs) from wild-type, Kir6.2–/–, and gp91phox–/– mice. mPMVECs were labeled with PKH26 and cultured in artificial capillaries for 72 h at 5 dyn/cm2 (flow adaptation), followed by 24 h of stop flow or continued flow. ROS production during the first hour of ischemia was markedly diminished compared with wild-type mice in both types of gene-targeted mPMVECs. Cell proliferation was defined as the proliferation index (PI). After 72 h of flow, >98% of PKH26-labeled wild-type mPMVECs were at a single peak (PI 1.0) and the proportion of cells in the S+G2/M phases were at 5.8% on the basis of cell cycle analysis. With ischemia (24 h), PI increased to 2.5 and the ratio of cells in S+G2/M phases were at 35%. Catalase, diphenyleneiodonium, and cromakalim markedly inhibited ROS production and cell proliferation in flow-adapted wild-type mPMVECs. Significant effects of ischemia were not observed in Kir6.2–/– and gp91phox–/– cells. ANG II activation of NADPH oxidase was unaffected by KATP gene deletion. Thus loss of shear stress in flow-adapted mPMVECs results in cell division associated with ROS generated by NADPH oxidase. This effect requires a functioning cell membrane KATP channel. cell signaling; ischemia; mechanotransduction; KATP channels; NADPH oxidase  相似文献   

5.
Protoplasts of cotton cotyledons were isolated and culturedto undergo cell wall regeneration and cell division. DNA contentand cell cycle parameters of nuclei from cotyledons and/or protoplastswere determined by flow cytometry. The DNA content of cotton,Gossypium hirsutum L., was estimated to be 4·34±0·12pg DNA per nucleus. There was a strong positive correlation between G2 or Sand G2,and cell wall regeneration and cell division and a strong negativecorrelation between G1, and cell wall regeneration and celldivision of cotton cotyledon protoplasts. The cell cycle statusof cotyledons changes during their development; as the cotyledonsenlarge, the proportion of cells in G0 and G1 phases of thecell cycle increases. The implication of these results in relationto protoplast growth and development is discussed. Key words: Cell cycle parameters, cell wall regeneration, cell division, flow cytometry, Gossypium  相似文献   

6.
Carbonic anhydrase (CA) activity in wild type cells of Chlamydomonasreinhardtii was low when cells were cultured under 2% CO3 inthe light. When the gas phase was changed to air, CA activityincresaed as much as 20 fold over the next 24 hours. In contrast,CA activity did not change markedly in cells of the mutantspet 20-8 (PS II-negative), lip 10-2 (photophosphorylation-negative),and F60 (phosphoribulokinase-negative), when they were subjectedto the same induction regimen. DCMU (10–5 M) and cydoheximide(3 µg/ml) severely inhibited the induction in wild typecells. No induction occured when CO2 concentration was loweredin darkness. 3Present adress: Photoconversion Research Branch, Solar EnergyResearch Institute, Golden, Colorado 80401, USA. (Received June 7, 1982; Accepted December 25, 1982)  相似文献   

7.
Patch-clamping and cell imageanalysis techniques were used to study the expression of thevolume-activated Cl current,ICl(vol), and regulatory volume decrease (RVD)capacity in the cell cycle in nasopharyngeal carcinoma cells (CNE-2Z). Hypotonic challenge caused CNE-2Z cells to swell and activated aCl current with a linear conductance, negligibletime-dependent inactivation, and a reversal potential close to theCl equilibrium potential. The sequence of anionpermeability was I > Br > Cl > gluconate. The Cl channelblockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB),and ATP inhibited ICl(vol). Synchronous cultures of cells were obtained by the mitotic shake-off technique and by adouble chemical-block (thymidine and hydroxyurea) technique. Theexpression of ICl(vol) was cell cycle dependent,being high in G1 phase, downregulated in S phase, butincreasing again in M phase. Hypotonic solution activated RVD, whichwas cell cycle dependent and inhibited by the Cl channelblockers NPPB, tamoxifen, and ATP. The expression of ICl(vol) was closely correlated with the RVDcapacity in the cell cycle, suggesting a functional relationship.Inhibition of ICl(vol) by NPPB (100 µM)arrested cells in G0/G1. The data also suggest that expression of ICl(vol) and RVD capacity areactively modulated during the cell cycle. The volume-activatedCl current associated with RVD may therefore play animportant role during the cell cycle progress.

  相似文献   

8.
9.
Rates of CO2 and HCC3 fixation in cells of various Chlorellaspecies in suspension were compared from the amounts of 14Cfixed during the 5 s after the injection of a solution containingonly 14CO2 or H14CO3. Results indicated that irrespectiveof the CO2 concentration during growth, Chlorella vulgaris 11h and C. miniata mainly utilized CO2, whereas C. vulgaris C-3,C. sp. K. and C. ellipsoidea took up HCO3 in additionto CO2. Cells of C. pyrenoidosa that had been grown with 1.5%CO2 (high-CO2 cells) mainly utilized CO2, whereas those grownwith air (low-CO2 cells) utilized HCO3 in addition toCO2. Cells that utilized HCO3 had carbonic anhydrase(CA) on their surfaces. The effects of Diamox and CA on the rates of CO2 and HCO3fixation are in accord with the inference that HCO3 wasutilized after conversion to CO2 via the CA located on the cellsurface. CA was found in both the soluble and insoluble fractions;the CA on the cell surface was insoluble. Independent of the modes of utilization, the apparent Km (NaHCO3)for photosynthesis was much lower in low-CO2 cells than in high-CO2ones. The fact that the CA in the soluble fraction in C. vulgarisC-3 was closely correlated with the Km(NaHCO3) indicates thatsoluble CA lowers the Km. 1 Dedicated to the late Professor Joji Ashida, one of the foundersand first president of the Japanese Society of Plant Physiologists. 4 On leave from Research and Production Laboratory of Algology,Bulgarian Academy of Sciences, Sofia. (Received September 14, 1982; Accepted March 1, 1983)  相似文献   

10.
A. F. Croes  H. J. Dodemont  C. Stumm 《Planta》1976,130(2):131-136
Summary Saccharomyces cells induced to undergo meiosis when in late G 1 or early S-phase, proceed mitotically until a point between completion of the S-phase and nuclear division. From that point, the cells start meiotic development without intervention of a round of premeiotic DNA replication. Cells induced at any other point in the cell cycle, enter meiosis from G 1.  相似文献   

11.
Cell cycle-dependent calcium oscillations in mouse embryonic stem cells   总被引:2,自引:0,他引:2  
During cell cycle progression, somatic cells exhibit different patterns of intracellular Ca2+ signals during the G0 phase, the transition from G1 to S, and from G2 to M. Because pluripotent embryonic stem (ES) cells progress through cell cycle without the gap phases G1 and G2, we aimed to determine whether mouse ES (mES) cells still exhibit characteristic changes of intracellular Ca2+ concentration during cell cycle progression. With confocal imaging of the Ca2+-sensitive dye fluo-4 AM, we identified that undifferentiated mES cells exhibit spontaneous Ca2+ oscillations. In control cultures where 50.4% of the cells reside in the S phase of the cell cycle, oscillations appeared in 36% of the cells within a colony. Oscillations were not initiated by Ca2+ influx but depended on inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release and the refilling of intracellular stores by a store-operated Ca2+ influx (SOC) mechanism. Using cell cycle synchronization, we determined that Ca2+ oscillations were confined to the G1/S phase (70% oscillating cells vs. G2/M with 15% oscillating cells) of the cell cycle. ATP induced Ca2+ oscillations, and activation of SOC could be induced in G1/S and G2/M synchronized cells. Intracellular Ca2+ stores were not depleted, and all three IP3 receptor isoforms were present throughout the cell cycle. Cell cycle analysis after EGTA, BAPTA-AM, 2-aminoethoxydiphenyl borate, thapsigargin, or U-73122 treatment emphasized that IP3-mediated Ca2+ release is necessary for cell cycle progression through G1/S. Because the IP3 receptor sensitizer thimerosal induced Ca2+ oscillations only in G1/S, we propose that changes in IP3 receptor sensitivity or basal levels of IP3 could be the basis for the G1/S-confined Ca2+ oscillations. pluripotent; IP3; store operated Ca entry; IP3 receptor  相似文献   

12.
Endogenous gibberellins (GAs) in several kinds of crown gallcells and cultured cells derived from normal tissue of Nicotianatabacum were systematically analyzed by gas chromatography-selectedion current monitoring (GC-SICM) after chromatographic purifications,and GA1, GA9, GA19 and GA20 were identified. Agrobacterium tumefaciens,a pathogen of crown gall, was confirmed not to produce GAs inits culture. We also investigated endogenous GAs of mother plant,tobacco, and found the same kinds of GAs as in cultured cells. 3 Present address: College of Agriculture, Chonnam NationalUniversity, Kwangju 500, Korea. (Received May 19, 1982; Accepted July 22, 1983)  相似文献   

13.
The time and duration of each phase of the premeiotic interphase were determined in microsporocytes of two clones (S and K clones) ofTrillium kamtschaticum. After collectionTrillium plants were stored at 3 C or 7 C prior to completion of premeiotic mitosis in archesporial cells. For autoradiography, cells were explanted in the presence of3H-thymidine to identify the interval of the premeiotic DNA synthesis. Approximate durations of the G1, S and G2 phases for the K clone stored at 3 C were estimated to be 12, 12 and 14 days, respectively. The interval of premeiotic development was markedly different between clones. A high degree of synchrony in meiotic development, which is usually observed within anthers up to late meiotic prophase, was confirmed at the S phase, suggesting that synchrony is established during the G1 interval.  相似文献   

14.
15.
16.
An inwardly rectifying swelling- and meiotic cell cycle-regulated anion current carried by the ClC channel splice variant CLH-3b dominates the whole cell conductance of the Caenorhabditis elegans oocyte. Oocytes also express a novel outwardly rectifying anion current termed ICl,OR. We recently identified a worm strain carrying a null allele of the clh-3 gene and utilized oocytes from these animals to characterize ICl,OR biophysical properties. The ICl,OR channel is strongly voltage dependent. Outward rectification is due to voltage-dependent current activation at depolarized voltages and rapid inactivation at voltages more hyperpolarized than approximately +20 mV. Apparent channel open probability is zero at voltages less than +20 mV. The channel has a 4:1 selectivity for Cl over Na+ and an anion selectivity sequence of SCN > I > Br > Cl > F. ICl,OR is relatively insensitive to most conventional anion channel inhibitors including DIDS, 4,4'-dinitrostilbene-2,2'-disulfonic acid, 9-anthracenecarboxylic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid. However, the current is rapidly inhibited by niflumic acid, metal cations including Gd3+, Cd2+, and Zn2+, and bath acidification. The combined biophysical properties of ICl,OR are distinct from those of other anion currents that have been described. During oocyte meiotic maturation, ICl,OR activity is rapidly downregulated, suggesting that the channel may play a role in oocyte Cl homeostasis, development, cell cycle control, and/or ovulation. chloride channel; ovulation; cell cycle; meiotic maturation  相似文献   

17.
Flow Cytometric Determination of Nuclear Replication Stage in Seed Tissues   总被引:2,自引:0,他引:2  
Flow cytometric determination of DNA levels in embryos of fullymatured seeds of various plant species revealed large amountsof 2C DNA signals, indicating that most cells had arrested thecell cycle at the presynthetic G1 phase of nuclear division.The accumulation of cells at G1 was found both in orthodox andin recalcitrant (i.e. Castanea sativa) seed species. As recalcitrantseeds are characterized by the absence of maturation drying,the arrest of the cell cycle in the presynthetic phase may notbe linked to the seed water status. Apart from the 2C signal, 4C values were found in the embryoof some seed species (e.g. Raphanus sativus) indicating thatcells were arrested in G2 Cells arrested in G2 were primarilylocated in the root-tip region of the embryo. In addition, combinationsof higher C values (i.e. 8C, 12C, 16C and 64C) were observedin the endosperm of Solanum melongena and Lycopersicon esculentum,and in the root-tip cells of Phaseolus vulgaris and Spinaciaoleracea. These mixtures of polyploid nuclei (also called 'polysomaty')may arise from a developmentally controlled cellular endoreduplicationand indicates that in each cell type of the seed the amountof DNA is regulated both spatially and temporally.Copyright1993, 1999 Academic Press Endive, Cichorium endiva, lettuce, Lactuca sativa, egg-plant, Solanum melongena, pepper, Capsicum annuum, tomato, Lycopersicon esculentum, radish, Raphanus sativus, bean Phaseolus vulgaris, spinach, Spinacia oleracea, chestnut, Castanea sativa, beech, Fagus sylvatica, pine, Pinus nigra, DNA content, flow cytometry, seed, nuclear replication stage, C levels, storage  相似文献   

18.
The response ofH+-ATPase to lethal acid stress isunknown. A mutant strain (called NHE2d) was derived from cultured inner medullary collecting duct cells (mIMCD-3 cells) following three cyclesof lethal acid stress. Cells were grown to confluence on coverslips,loaded with2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, andmonitored for intracellular pH(pHi) recovery from an acid load. The rate of Na+-independentpHi recovery from an acid load inmutant cells was approximately fourfold higher than in parent cells(P < 0.001). TheNa+-independentH+ extrusion was ATP dependent and K+ independent and wascompletely inhibited in the presence of diethylstilbestrol, N, N'-dicyclohexylcarbodiimide,or N-ethylmaleimide. Theseresults indicate that theNa+-independentH+ extrusion in cultured medullarycells is mediated via H+-ATPaseand is upregulated in lethal acidosis. Northern hybridization experiments demonstrated that mRNA levels for the 16- and 31-kDa subunits of H+-ATPase remainedunchanged in mutant cells compared with parent cells. We propose thatlethal acid stress results in increased H+-ATPase activity in innermedullary collecting duct cells. Upregulation ofH+-ATPase could play a protectiverole against cell death in severe intracellular acidosis.

  相似文献   

19.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

20.
We recentlydemonstrated expression of a novel, glioma-specificCl current in glial-derivedtumor cells (gliomas), including stable cell lines such as STTG1,derived from a human anaplastic astrocytoma. We used STTG1 cells tostudy whether glioma Clchannel (GCC) activity is regulated during cell cycle progression. Cells were arrested in defined stages of cell cycle(G0,G1,G1/S, S, and M phases) using serumstarvation, mevastatin, hydroxyurea, demecolcine, and cytosine-D-arabinofuranoside. Cellcycle arrest was confirmed by measuring[3H]thymidineincorporation and by DNA flow cytometry. Using whole cell patch-clamprecordings, we demonstrate differential changes in GCC activity aftercell proliferation and cell cycle progression was selectively altered;specifically, channel expression was low in serum-starved,G0-arrested cells, increasedsignificantly in early G1,decreased during S phase, and increased after arrest in M phase.Although the link between the cell cycle and GCC activity is not yetclear, we speculate that GCCs are linked to the cytoskeleton and thatcytoskeletal rearrangements associated with cell division lead to theobserved changes in channel activity. Consistent with this hypothesis,we demonstrate the activation of GCC by disruption of F-actin usingcytochalasin D or osmotic cell swelling.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号