首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell culture ofAngelica gigas Nakai producing decursin derivatives and immunostimulating polysaccharides was preserved in liquid nitrogen after pre-freezing in a deep freezer at −70°C for 480 min. The effects of the cryoprotectant and pretreatment before cooling were investigated to obtain the optimal procedure for cyropreservation. When compared to mannitol, sorbitol, or NaCl with a similar osmotic pressure, 0.7M sucrose was found to be the best osmoticum for the cryopreservation ofA. gigias cells. In the pre-culture medium, the cells in the exponential growth phase showed the best post-freezing survival after cryopre-servation. A mixture of sucrose, glycerol, and DMSO was found to be an effective cryoprotectant and a higher concentration of the cryoprotectant provided better cell viability. When compared with the vitrification, the optimum cryopreservation method proposed in this study would seem to be more effective for the long-term storage of suspension cells. The highest relative cell viability established with the optimal procedure was 89%.  相似文献   

2.
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.  相似文献   

3.
Recent significant contributions to the design of large-scale plant cell cultures for secondary metabolite production include: the development of a strategy to control the concentration of dissolved gases at constant shear; a surface immobilization technique to retain cell mass at high mixing rates; and a modified stirred-tank reactor with a mesh cage to prevent damage of hairy root cultures.  相似文献   

4.
5.
A non-destructive, simple and accurate method of determining the relative growth rate (RGR) of the packed cell volume (PCV) of plant suspension cells in one Erlenmeyer flask at any time during the incubation period is described. The Erlenmeyer flask was tilted and the length of the chord formed by the surface of the packed cells across the bottom of the flask was measured. The chord length and the log PCV were correlated in a calibration line. The method enables the RGR during the exponential growth phase to be calculated by multiplying the slope of the linear part of the curve of the chord length in time with the slope of the calibration line. In order to investigate other growth parameters and to analyse the accuracy of the method statistically, a four-parameter function for the chord length and a computer program were used. The RGR during the exponential growth phase of cell suspensions of Solanum tuberosum and Haplopappus gracilis appeared to be independent of the PCV of the inoculum. The method appeared to be sufficiently accurate.  相似文献   

6.
S U Kim 《Human cell》1989,2(2):122-131
Cells isolated from the avian and mammalian central and peripheral nervous system and cultured in vitro provide an opportunity to study in situ properties of neurons and glial cells under relatively simple and carefully controlled conditions. Since Harrison's success in maintaining in vitro embryonic frog spinal cord 80 years ago, neural tissue culture has developed into an important and versatile discipline of neuroscience. The techniques developed in the past fall into four broad classes: Explant cultures, which are explanted from specific neuroanatomic loci to substrates as small tissue fragments. Dissociated cell cultures, which involve the seeding of enzymatically or mechanically dispersed cells on various attachment substrates. Reaggregate cultures, which require re-association of dissociated cells into small aggregates. Purified cell populations, which are prepared by the isolation of different cell types by gradient centrifugation or other separation techniques. These cultures have been utilized in studying various aspects of brain development and function. In this review several areas of significant and stimulating development in neural cell culture have been documented. They include formulation of serum-free medium, effects of growth factors, utilization of cell type-specific markers, and isolation and culture of purified neuronal/glial cells.  相似文献   

7.
Cells of an in vitro culture system are not the same as for an in vivo system, metabolically and physiologically; ineffective utilization of nutrients occurs by cells in vitro. Therefore, a simpler approach is needed to examine closely and overcome differences between in vivo and in vitro cells.Recognizing the ineffectiveness of nutrient utilization in vitro, we have constructed, a balanced, fortified high-density medium based on RPMI 1640 medium previously optimized for relatively low-density cell culture. The high-density medium was used to cultivate a hybridoma line in a batch spinner flask culture. In this fortified medium, a hybridoma cell line 2c3.1 was cultivated to near 1 x 10(7) cells/mL in batch suspension culture. During the culture, glucose, glutamine, and 10 essential amino acids of concentrations five times richer than normal in the medium were almost thoroughly consumed. Combined analysis of these consumption profiles reveals that the balanced, fortified nutrient supply contributes much to cellular activity to overcome the limitations of in vitro cellular growth. Intermediate metabolites, such as ammonium ion and lactic acid, were produced over concentrations reported until now to be inhibitory. This observation suggests that the major conclusive factor against cellular growth over the critical cell density is not so-called inhibitory metabolites. As a result of the high-density culture, 5-8 times higher production of a monoclonal antibody for hepatitis B surface antigen (anti-HBs) was obtained.Active cellular consumption of all the essential nutrients and the corresponding production of MAb strongly support the potential of our approach to overcome the growth limitation of cells in vitro and to obtain high-density hybridoma cell culture.  相似文献   

8.
9.
At the end of a hybridoma batch culture, the cells are usually discarded after separation from the culture broth. If, however, they are aseptically recycled into the reactor, the production process can be resumed simply by the addition of fresh medium. This cycle can then be repeated several times consecutively. In a test case, with a mouse hybridoma, we found antibody yields for each cycle in the same range as for a standard batch. In a 15 1 stirred tank reactor we could, within 6 days, produce 2.8 g of monoclonal antibody (MAb). This type of reactor operation allowed a doubling in the reactor volumetric productivity (mg/l/day).  相似文献   

10.
The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed.  相似文献   

11.
12.
13.
14.
The application of cyclodextrins as precursor solubilizers in biotechnological processes, in which plant cells are involved, is new. In this paper the possibilities for cyclodextrin facilitated bioconversions by freely suspended and/or immobilized plant cells or plant enzymes are demonstrated. After complexation with -cyclodextrin, the phenolic steroid 17-estradiol could be ortho-hydroxylated into a catechol, mainly 4-hydroxyestradiol, by a phenoloxidase from in vitro grown cells of Mucuna pruriens. By complexation with -cyclodextrin the solubility of the steroid increased from almost insoluble to 660 M. In addition, by complexation with -cyclodextrin, a solution of 3 mM coniferyl alcohol could be fed to cell cultures of Podophyllum hexandrum in order to enhance the accumulation of podophyllotoxin. Finally, the glucosylation of podophyllotoxin by cell cultures derived from Linum flavum was investigated. Four cyclodextrins: -cyclodextrin, -cyclodextrin, hydroxypropyl--cyclodextrin and dimethyl--cyclodextrin were used to improve the solubility of podophyllotoxin. Dimethyl--cyclodextrin met our needs the best and the solubility of podophyllotoxin could be enhanced from 0.15 to 1.92 mM. Podophyllotoxin--d-glucoside was formed at a rate of 0.51 mmol l-1 suspension per day by the L. flavum cells growing in the presence of 1.35 mM podophyllotoxin, complexed with dimethyl--cyclodextrin.Abbreviations DW dry weight - E2 17-estradiol - FW fresh weight - PCV packed cell volume  相似文献   

15.
Information on the interaction between mixed populations in the rumen and plant phenolics is required to fully elucidate the limitations of phenolic compounds on forage digestibility. The objective of this study was to examine the degradation of Italian ryegrass (Lolium multiflorum L.) hay incubated with mixed ruminal populations in consecutive batch culture (CBC) with or without phenolic acids or phenolic compounds extracted from plant cell walls. Each CBC consisted of a series of 10 cultures (3 replicates per culture) inoculated (10%, vol/vol) in sequence at 48-h intervals with microbial suspension from the previous set of cultures. All cultures were grown on a semidefined medium containing Italian ryegrass hay, and each CBC was initiated with an inoculum from the rumen. Rumenlike fermentation characteristics were maintained in control CBCs by repeated inoculum transfer. Treatment CBCs were transferred as described above, but cultures 5, 6, and 7 were incubated in the presence of trans-p-coumaric, cis-p-coumaric, or trans-ferulic acid or phenolics extracted from the cell walls of maize stem or barley straw. Mean apparent dry matter disappearance in control CBC cultures was 495 mg per g of hay, whereas the presence of phenolics reduced the initial dry matter disappearance by 6.3 to 25.6%. trans-p-Coumaric acid and, to a lesser extent, the phenolics from cell walls of maize stem were the most inhibitory compounds for dry matter disappearance and for the production of volatile fatty acids; trans-p-coumaric acid altered the molar ratio of acetate/propionate/butyrate. The CBC further showed variations in the ability of the rumen microbial population to adapt to phenolic compounds.  相似文献   

16.
Studies of the possible viral etiology of human leukemia have required large quantities of cultured cells derived from human hematopoietic tissues. Since cultures sufficiently large and free from contamination could not readily be produced according to existing methods, a pilot, cell culture plant has been constructed for the production of mammalian cells in mass quantity. 500-ml to 20-liter trophocell units have already proved to be scientifically and economically practical, as they provide good reliability, excellent growth rates, and sustained yield of human cells. 200-liter stainless steel culture units have now been added to the trophocell system. Five complete 200 liter units are now in operation. The design of the original stainless steel unit was based on that of a stainless steel, jacketed soup kettle. There are no openings in the vessel other than those in the lid, which provide convenient access points for sampling, sensor probes, etc. Environmental parameters, e.g., liquid level, temperature, and pH, are monitored and controlled with commercially available apparatus. Many initial problems connected with the new 200 liter units have been resolved, but operational and design problems remain in the areas of stable instrumentation, cell harvesting, salvaging and reuse of unspent media components, establishment of physiologic steady stale, recovery of virus-containing cells with reculture of the remaining unaffected cells, and the recovery and separation of cell components and special products such as immunoglobulins, interferons, and hormones. A definitive cell plant with culture units of 20, 50, 250, and 1250 liters is now being constructed.  相似文献   

17.
A mathematical model was developed, based on the time dependent changes of the specific growth rate, for prediction of the typical microbial cell growth in batch cultures. This model could predict both the lag growth phase and the stationary growth phase of batch cultures, and it was tested with the batch growth ofTrichoderma reesei andLactobacillus delbrucckii.  相似文献   

18.
As protoplasts have the characteristics of no cell walls, rapid population growth, and synchronicity, they are useful tools for research in many fields, especially cellular biology (Table 1). This article is an overview that focuses on the application of protoplasts to investigate the mechanisms of dedifferentiation, including changes in hormone signals, epigenetic changes, and organelle distribution during the dedifferentiation process. The article also emphasizes the wide range of uses for protoplasts in studying protein positions and signaling during different stresses. The examples provided help to show that protoplast systems, for example the mesophyll protoplast system of Arabidopsis, represent promising tools for studying developmental biology. Meanwhile, specific analysis of protoplast, which comes from different tissue, has specific advantages and limitations (Table 2), and it can provide recommendations to use this system.  相似文献   

19.
Hybridoma 130-8F producing anti-F monoclonal antibodies (MAb) were grown in batch and fed-batch mode with glutamine as the limiting substrate. The initial concentration of glucose varied between 10 and 25 mM but was not growth limiting. Monoclonal antibody production was identified as being partially growth associated. Employing the cumulative cell hour concept, external metabolic flux estimates were calculated during the exponential growth phase for MAb, glucose, amino acids, ammonia and lactate. Through nutritional profiling using principal component analysis (PCA) followed by partial least squares regression (PLS), key metabolites were identified and grouped for significant positive, significant negative, low level, and negligible correlation to MAb production, cellular growth, glucose consumption, and ammonia and lactate production. Significant relationships peculiar to Hybridoma 130-8F were identified, such as demand for two normally non-essential amino acids (asparagine and aspartic acid), and the positive correlation between MAb and ammonia production. Industrial Sponsor: Sanofi Pasteur (formerly Aventis Pasteur), Toronto, Canada.  相似文献   

20.
Two key issues in the application of plant-cell-culture technology to the production of valuable secondary metabolites are reviewed: the selection of cell lines with suitable genetic, biochemical and physiological characteristics; and the optimization of bioreactor environments. Although great progress has been made in recent years in the design, selection and optimization of bioreactor hardware, optimization of environmental factors such as medium components, light irradiation and O2 supply needs detailed investigations for each case. With a better understanding of plant cell metabolism and physiology, further developments in cultivation processes, such as process integration and on-line monitoring and control, can be expected in the near future.J.-J. Zhong and J.-T. Yu are with the Research Institute of Biochemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China T. Yoshida is with the International Center of Cooperative Research in Biotechnology (ICBiotech), Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号