首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New methods for better identification of timber geographical origin would constitute an important technical element in the forest industry, for phytosanitary certification procedures or in the chain of custody developed for the certification of timber from sustainably managed forests. In the case of the European white oaks, a detailed reference map of chloroplast (cp) DNA variation across the range exists, and we propose here to use the strong geographical structure, characterized by a differentiation of western vs. eastern populations, for the purpose of oak wood traceability. We first developed cpDNA markers permitting the characterization of haplotype on degraded DNA obtained from wood samples. The techniques were subsequently validated by confirming the full correspondence between genotypes obtained from living tissues (buds) and from wood collected from the same individual oak. Finally, a statistical procedure was used to test if the haplotype composition of a lot of wood samples is consistent with its presumed geographical origin. Clearly, the technique cannot permit the unambiguous identification of wood products of unknown origin but can be used to check the conformity of genetic composition of wood samples with the region of alleged origin. This could lead to major applications not only in the forest industry but also in archaeology or in palaeobotany.  相似文献   

2.

Purpose  

High-quality wood production is based on both natural forestry populations and dedicated tree plantations, also mentioned as industrial plantations. The establishment of dedicated plantations needs high-quality seedlings, often grown in a nursery, having specific genetic and morphological features. From seed gathering to final selling, the growth of the seedlings needs human interventions and specific inputs such as fertilizers, pesticides, substrates, and capital goods (e.g., pots and greenhouses). All these inputs of course can cause not negligible environmental impacts, due to their production, maintenance, and final disposal. For these reasons, the environmental impact due to seedlings production in a nursery deserves deep analysis to assess the overall impact linked to wood supply chain: it is important that wood products are able to meet high environmental standards. This study is focused on 1- and 2-year-old walnut tree (Juglans regia L.) seedlings, aimed to high-quality timber production.  相似文献   

3.
Forest biotechnology has been increasingly associated with wood production using plantation forestry, and has stressed applications that use pedigreed material and transgenic trees. Reasons for this emphasis include limitations of available technologies to conform to underlying genetic features of undomesticated forest tree populations. More recently, genomic technologies have rapidly begun to expand the scope of forest biotechnology. Genomic technologies are well suited to describe and make use of the abundant genetic variation present in undomesticated forest tree populations. Genomics thus enables new research and applications for conservation and management of natural forests, and is a primary technological driver for new research addressing the use of forests trees for carbon sequestration, biofuels feedstocks, and other 'green' applications.  相似文献   

4.
A successful DNA extraction from wood yielding appropriate DNA quality for PCR amplification allows molecular genetic investigations of wood tissue. Genotypes, the origin of sampled material, and species can be identified based on an investigation of wood if suitable information on genetic variation patterns within and among species is available. Potential applications are in forensics and in the control of the timber and wood trade. We extracted DNA from wood of Dipterocarpaceae, a family that dominates rainforests and comprises many important timber species in Southeast Asia. Several different DNA isolation techniques were compared and optimized for wood samples from natural populations and from wood processing enterprises. The quality of the DNA was tested by spectrophotometry, PCR amplification, and PCR inhibitor tests. An average DNA yield of 2.2 μg was obtained per 50–100 mg of dried wood sample. Chloroplast DNA (cpDNA) regions of different length were amenable to PCR amplification from the extracted DNA. Modification of DNA isolation techniques by the addition of polyvinylpyrrolidone (PVP) addition up to 3.1% into lysis buffer reduced PCR inhibition effectively. In order to evaluate the extraction method, we analyzed leaves and wood from the same tree by PCR amplification, genotyping and sequencing of chloroplast microsatellites.  相似文献   

5.
Forests are vital to the world's ecological, social, cultural and economic well‐being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial‐scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter‐lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment.  相似文献   

6.
In anticipation of more severe summer droughts, forestry in temperate Europe is searching for drought-resistant ecotypes of native tree species that might maintain ecosystem services in the future. We investigated how spring precipitation and soil conditions interact with summer drought and affect the establishment of conifer seedlings from different climatic origin. Emergence, establishment and subsequent performance of seedlings originating from autochthonous, Central Alpine, continental Eastern European, and Mediterranean Pinus sylvestris and Picea abies populations were studied in the dry Alpine Rhine valley, Switzerland, at three sites with differing soil water holding capacities and in 3 years with contrasting weather conditions. In addition to this natural inter-annual variation, precipitation was manipulated within sites with throughfall reduction roofs. Seedling establishment and growth were principally affected by the spring weather in the year of emergence. In years with average to positive spring water balance, seedlings grown at the site with the highest water holding capacity had 2–5 times more aboveground biomass than seedlings grown at sites with less favourable soils. Effects of seed origin were marginal and only detectable at the drier sites: contrary to our expectations, seedlings from the Central Alpine Rhone valley, where the climatic spring water deficit is large, outperformed those from the Mediterranean. Consequently, plantation of non-native populations from dryer origin will mitigate the effects of increased summer drought at driest sites only, while the inter-annual variability of spring precipitation will continue to enable temperate conifers to regenerate on a wide range of forest soils independent of seed origin.  相似文献   

7.
Hardwood forests and plantations are an important economic resource for the forest products industry worldwide and to the international trade of lumber and logs. Hardwood trees are also planted for ecological reasons, for example, wildlife habitat, native woodland restoration, and riparian buffers. The demand for quality hardwood from tree plantations will continue to rise as the worldwide consumption of forest products increases. Tree improvement of temperate hardwoods has lagged behind that of coniferous species and hardwoods of the genera Populus and Eucalyptus. The development of marker systems has become an almost necessary complement to the classical breeding and improvement of hardwood tree populations for superior growth, form, and timber characteristics. Molecular markers are especially valuable for determining the reproductive biology and population structure of natural forests and plantations, and the identity of genes affecting quantitative traits. Clonal reproduction of commercially important hardwood tree species provides improved planting stock for use in progeny testing and production forestry. Development of in vitro and conventional vegetative propagation methods allows mass production of clones of mature, elite genotypes or genetically improved genotypes. Genetic modification of hardwood tree species could potentially produce trees with herbicide tolerance, disease and pest resistance, improved wood quality, and reproductive manipulations for commercial plantations. This review concentrates on recent advances in conventional breeding and selection, molecular marker application, in vitro culture, and genetic transformation, and discusses the future challenges and opportunities for valuable temperate (or “fine”) hardwood tree improvement.  相似文献   

8.
This paper reports on the tree structure, tree dimension relationships and woody biomass production and removal of a sub-tropical natural forest in the Mamlay watershed of the Sikkim Himalaya. The forest provides fuel, fodder and timber to four villages. Only 11 tree species were found growing in the tree stratum despite the high diversity in the stand (32 tree species). The forest shows good regeneration potential with 5474 seedlings/ha and 1776 saplings/ha, but the population structure revealed a marked paucity of trees of higher diameter classes due to removal of trees of lower diameters. Standing wood biomass of 362 Mg/ha is mainly shared by 4 dominating species in the stand. The boles are removed mainly for timber and fuel purposes and about 22 Mg/ha wood biomass was removed in between 1987–1991. Net Primary productivity of woody biomass of the forest is recorded to be 18 Mg/ha/year. 3.85 Mg/ha of annual woody biomass production was removed in the form of tree boles apart from lopping of branches.  相似文献   

9.
The extent of tropical forest has been declining, due to over-exploitation and illegal logging activities. Large quantities of unlawfully extracted timber and other wood products have been exported, mainly to developed countries. As part of the export monitoring effort, we have developed methods for extracting and analyzing DNA from wood products, such as veneers and sawn timbers made from dipterocarps, in order to identify the species from which they originated. We have also developed a chloroplast DNA database for classifying Shorea species, which are both ecologically and commercially important canopy tree species in the forests of Southeast Asia. We are able to determine the candidate species of wood samples, based on DNA sequences and anatomical data. The methods for analyzing DNA from dipterocarp wood products may have strong deterrent effects on international trade of illegitimate dipterocarp products. However, the method for analyzing DNA from wood is not perfect for all wood products and need for more improvement, especially for plywood sample. Consequently, there may be benefits for the conservation of tropical forests in Southeast Asia.  相似文献   

10.
An increasing world population and rise in demand for tree products, especially wood, has increased the need to produce more timber through planting more forest with improved quality stock. Superior trees are likely to arise from several sources. Firstly, forest trees can be selected from wild populations and cloned using macropropagation techniques already being investigated for fruit tree rootstocks. Alternatively, propagation might be brought aboutin vitro through micropropagation or sustained somatic embryogenesis, with encapsulation of the somatic embryos to form artificial seeds. Tree quality could be improved through increased plant breeding and it is likely that experienced gained, to date, in the breeding of fruit species will be useful in devising strategies for forest trees. Since the development of techniques to regenerate woody plants from explant tissues, cells and protoplasts, it is now feasible to test the use of tissue culture methods to bring about improvements in tree quality. Success has already been achieved for tree species in the generation of somaclonal and protoclonal variation, the formation of haploids, triploids and polyploids, somatic hybrids and cybrids and the introduction of foreign DNA through transformation. This review summarizes the advances made so far in tree biotechnology, and suggests some of the directions that it might take in the future.  相似文献   

11.
Amazonian white-water (várzea) floodplains harbor many commercially important timber species which in Brazil are harvested following regulations of the Federal Environmental Agency (IBAMA). Although it is well-known that tree physiology, growth, and species distribution of Amazonian floodplain trees is linked to the heights and durations of the periodical inundations, information about timber stocks and population dynamics is lacking for most tree species. We investigated timber stocks and the population structure of four intensely logged tree species in a western Brazilian várzea forest on an area totaling 7.5 ha. Spatial distribution was investigated in all trees as a function of inundation height and duration and the distance to the river channel, and additionally for saplings (trees <10 cm diameter at breast height––DBH) as a function of the relative photosynthetically active radiation (rPAR). The diameter-class distribution in Hura crepitans and Ocotea cymbarum indicated that populations are subject to density variations that possibly are traced to small-scale flood variability. In all species, saplings concentrated at higher topographic elevations than the mature tree populations, which suggest that the physical ‘escape’ from a flooded environment is an important acclimation to flooding. While Ocotea cymbarum and Guarea guidonia were high-density wood species characterized by random dispersion and a pronounced shade-tolerance, Hura crepitans and Sterculia apetala presented lower wood density, aggregated dispersion, and were more light-demanding. All species presented exploitable stems according to the current harvest regulations, with elevated abundances in comparison to other Amazonian forest types. However, stem densities are below the harvest rates indicating that the harvest regulations are not sustainable. We recommend that the forest management in várzea forests should include specific establishment rates of timber species in dependence of the peculiar site conditions to achieve sustainability.  相似文献   

12.
Wood is almost as important to humanity as food, and the natural forests from which most of it is harvested from are of enormous environmental value. However, these slow-growing forests are unable to meet current demand, resulting in the loss and degradation of forest. Plantation forests have the potential to supply the bulk of humanity's wood needs on a long-term basis, and so reduce to acceptable limits the harvest pressures on natural forests. However, if they are to be successful, plantation forests must have a far higher yield of timber than their natural counterparts, on much shorter rotation times. To achieve this in reasonable time, biotechnology must be applied to the tree-improvement process, for which large increases in public and private capital investment are needed. However, additional obstacles exist in the form of opposition to plantations, some forest ecocertification schemes, and concerns about aspects of forest biotechnology, especially genetic engineering. It is the intention of this article to explain, in detail, why plantation forests are needed to sustainably meet the world's demand for wood, why they are not being developed fast enough, and why the application of biotechnology to tree improvement is essential to speeding up this process.  相似文献   

13.
Ten polymorphic microsatellite markers have been developed for Gonystylus bancanus (Ramin), a protected tree species of peat swamp forests in Malaysia and Indonesia. Eight markers were also shown to be polymorphic in other Gonystylus species. The markers will enable assessing the amount of genetic variation within and among populations and the degree of population differentiation, such that donor populations can be selected for reforestation projects. They may be used for tracing and tracking of wood in the production chain, so that legal trade in this Convention on International Trade in Endangered Species of Wild Fauna and Flora-protected timber species, derived from specifically described origins, can be distinguished from illegally logged timber.  相似文献   

14.
Studies on the ecological impacts of non‐timber forest products (NTFP) harvest reveal that plants are often more resilient to fruit and seed harvest than to bark and root harvest. Several studies indicate that sustainable fruit harvesting limits can be set very high (>80% fruit harvesting intensity). For species with clonal and sexual reproduction, understanding how fruit harvest affects clonal reproduction can shed light on the genetic risks and sustainability of NTFP harvest. We studied 18 populations of a gallery forest tree, Pentadesma butyracea (Clusiaceae), to test the impact of fruits harvest, climate and habitat size (gallery forest width) on the frequency of sexual or clonal recruitment in Benin, West Africa. We sampled populations in two ecological regions (Sudanian and Sudano‐Guinean) and in each region, we selected sites with low, moderate and high fruit harvesting intensities. These populations were selected in gallery forests with varying width to sample the natural variation in P. butyracea habitat size. Heavily harvested populations produced significantly less seedlings but had the highest density and proportion of clonal offspring. Our study suggests that for plant species with dual reproductive strategy (via seeds and clonal), fruit harvesting and associated disturbances that come with it can lead to an increase in the proportion of clonal offspring. This raises the issue that excessive fruit harvest by increasing the proportion of clonal offspring to the detriment of seed originated offspring may lead to a reduction in genetic diversity with consequence on harvested species capability to withstand environmental stochasticity.  相似文献   

15.
The planting of non‐timber forest products (NTFPs) in the understory of tropical forests is promoted in many regions as a strategy to conserve forested lands and meet the economic needs of rural communities. While the forest canopy is left intact in most understory plantations, much of the midstory and understory vegetation is removed in order to increase light availability for cultivated species. We assessed the extent to which the removal of vegetation in understory plantations of Chamaedorea hooperiana Hodel (Arecaceae) alters understory light conditions. We also examined how any changes in light availability may be reflected by changes in the composition of canopy tree seedlings regenerating in understory plantations. We employed a blocked design consisting of four C. hooperiana plantation sites; each site was paired with an adjacent, unmanaged forest site. Hemispherical canopy photographs were taken and canopy tree seedlings were identified and measured within 12 3 × 2 m randomly placed plots in each site for a total of 96 plots (4 blocks × 2 sites × 12 plots). Plantation management did not affect canopy openness or direct light availability but understory plantations had a higher frequency of plots with greater total and diffuse light availability than unmanaged forest. Comparisons of canopy tree seedling composition between understory plantations and unmanaged forest sites were less conclusive but suggest that management practices have the potential to increase the proportion of shade‐intolerant species of tree seedlings establishing in plantations. Given the importance of advanced regeneration in gap‐phase forest dynamics, these changes may have implications for future patterns of succession in the areas of forest where NTFPs are cultivated.  相似文献   

16.
Trees are an integral part of human life, and a vital component of biodiversity. Forest trees in particular are renewable sources of food, fodder, fuel wood, timber and other valuable non-timber products. Due to the rapid growth of population and the human desire to progress, there has been a tremendous reduction in forest cover from the earths surface. To maintain and sustain forest vegetation, conventional approaches have been exploited in the past for propagation and improvement. However, such efforts are confronted with several inherent bottlenecks. Biotechnological interventions for in vitro regeneration, mass micropropagation and gene transfer methods in forest tree species have been practised with success, especially in the last decade. Against the background of the limitations of long juvenile phases and life span, development of plant regeneration protocols and genetic engineering of tree species are gaining importance. Genetic engineering assumes additional significance, because of the possibility of introducing a desired gene in a single step for precision breeding of forest trees. There are no comprehensive and detailed reviews available combining research developments with major emphases on tissue culture and basic genetic transformation in tree species. The present communication attempts to overview the progress in tissue culture, genetic transformation and biotechnological applications in the last decade and future implications.  相似文献   

17.
18.
Hardwood tree species in forest, plantation, and urban environments (temperate regions of the world) are important biological resources that play a significant role in the economy and the ecology of terrestrial ecosystems, and they have aesthetic and spiritual value. Because of these many values of hardwood tree species, preserving forest tree biodiversity through the use of biotechnological approaches should be an integral component in any forestry program in addition to large-scale ecologically sustainable forest management and preservation of the urban forest environment. Biotechnological tools are available for conserving tree species as well as genetic characterization that will be needed for deployment of germplasm through restoration activities. This review concentrates on the biotechnological tools available for conserving, characterizing, evaluating, and enhancing hardwood forest tree biodiversity. We focus mainly on species grown for lumber and wood products, not species grown mainly for fiber (pulp and paper production). We also present a brief summary of the importance of non-wood forest products from temperate hardwood tree species (a research area that needs further development using biotechnological techniques) and a few case studies for preserving forest tree biodiversity.  相似文献   

19.
Assisted natural regeneration (ANR) is a simple, low‐cost forest restoration method that can effectively convert deforested lands of degraded vegetation to more productive forests. The method aims to accelerate, rather than replace, natural successional processes by removing or reducing barriers to natural forest regeneration such as soil degradation, competition with weedy species, and recurring disturbances (e.g., fire, grazing, and wood harvesting). Compared to conventional reforestation methods involving planting of tree seedlings, ANR offers significant cost advantages because it reduces or eliminates the costs associated with propagating, raising, and planting seedlings. It is most effectively utilized at the landscape level in restoring the protective functions of forests such as watershed protection and soil conservation. ANR techniques are flexible and allow for the integration of various values such as timber production, biodiversity recovery, and cultivation of crops, fruit trees, and non‐timber forest products in the restored forest. This paper describes the steps of applying ANR and conditions under which it will be most effective. It also discusses ANR’s comparative advantages as well as some of its constraints.  相似文献   

20.
BACKGROUND AND AIMS: Genetic structure and variability were examined in the only three extant populations of the narrow-endemic tree Antirhea aromatica (Rubiaceae, Guettardeae), an endangered species of the tropical forest of eastern Mexico. Patterns of genetic diversity within and among populations for adult plants and seedlings were obtained. METHODS: Allozyme electrophoresis of 15 loci was conducted and the data analysed with statistical approximation for obtaining genetic diversity, structure and gene flow. KEY RESULTS: The mean expected heterozygosity (He) in the adult and seedling populations was 0.18 +/- 0.08 and 0.20 +/- 0.09, respectively. The genetic variation explained by differences among populations was 51 and 35 %, for adult and seedling populations, respectively. On average, gene flow between paired adult populations was low (Nm = 0.26 +/- 0.09), compared with other trees from the tropical forest. CONCLUSIONS: The results indicated that the populations evaluated have high genetic variability, compared with other endemic and geographically narrowly distributed plant species, in areas with high levels of environmental heterogeneity (e.g. tropical forests). The conservation implications of the results are discussed, and in this regard it is proposed that A. aromatica should be considered as an indicator species with economic potential. It is suggested that sustainable management practices should be implemented and that the areas where the species is distributed should be declared a natural reserve to ensure the species conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号