首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

A set of comparative life cycle assessment case studies were undertaken to explore key issues relating to the environmental impacts of building materials. The case studies explore modeling practice for long-life components by investigating (1) recycled content and end-of-life recycling scenarios and (2) service life and maintenance scenarios. The study uses a window unit frames as the object of comparison, allowing for exploration of multiple materials and assembly techniques.

Methods

Four window frame types were compared: aluminum, wood, aluminum-clad wood, and unplasticized PVC (PVCu). These used existing product life cycle inventory data which included primary frame material, coatings, weather stripping sealants, but not glazing. The functional unit was a window frame required to produce 1 m2 of visible glazing, with similar thermal performance over a building lifespan of 80 years. The frames were compared using both the end-of-life and recycled content methods for end-of-life scenarios. The models were also tested using custom-use scenarios.

Results and discussion

Well-maintained aluminum window frames proved to be the least impactful option across all categories, in large part due to the credits delivered from recycling and expectations of long-life. Wood window frames had the least variability associated with maintenance and durability. The global warming potential (GWP) of a moderately maintained aluminum assembly was found to be 68 % less than PVCu and 50 % less than aluminum-clad wood. Using a long-life scenario, wood windows were found to have a 7 % lower GWP than the long-life scenario for aluminum-clad woods. Moderately and well-maintained aluminum windows require less energy to be produced and maintained over their lifetime than any of the wood scenarios. Expectations of service life proved to be the most important factor in considering environmental impact of frame materials.

Conclusions

The research shows significant gaps in available data—such as average realized life expectancies of common building components—while further underscoring that recycling rates are a driving factor in the environmental impact of aluminum building products. A modeling shift from the recycled content method to the end-of-life recycling method should promote goals of material recovery over pursuit of material with high recycled content. Hybrid methods, such as the use of Module D, may bridge the divide between these two approaches by providing due credit for use of recycled material, while supporting a design for recycling ethos. Further research is needed on how design and construction decisions affect collection and recovery rates in practice.
  相似文献   

2.

Background and purpose  

European Community claims for end-of-vehicles (ELVs) targets of at least 85% recycling and 95% recovery rate by 2015. At present, only about 80% of ELV total weight is being recycled, whereas the remaining fraction of 20%, which is called automotive shredder residue (ASR), is disposed by landfilling in most of the EU countries. In this study a comparison has been carried out among five ASR management strategies, chosen after a screening of the most common technologies suitable and available nowadays, aiming at proposing alternatives to the current disposal in terms of benefits resulting from the conservation of nonrenewable resources and reduction of wastes disposal. These scenarios are ASR landfill disposal, the current status quo for a further nonferrous metals recovery, ASR incineration with energy recovery, an advanced material recovery followed by thermal treatment of ASR residue and a feedstock recycling by means of gasification.  相似文献   

3.

Background, aim, and scope  

The interest in polyethylene terephthalate (PET) recycling is quite recent, but it has been growing steadily over the past few years. In this context, the aim of this paper is to assess the eco-profile, the energy savings and the environmental benefits of the use of recycled raw materials to manufacture products for thermal insulation of buildings in Italy (i.e., PET bottles post-consumer).  相似文献   

4.

Purpose and scope  

Two ISO-compliant approaches on modelling the recycling of plastics and metals are frequently applied in life cycle assessment case studies and intensively debated: the recycled content or cutoff approach and the end of life recycling or avoided burden approach. This paper discusses the two approaches from three different perspectives: (1) the kind of sustainability concept served, (2) the risk perception involved and (3) the eco-efficiency indicators resulting from the two approaches.  相似文献   

5.

Background, aim, and scope  

When the service life (or primary life) of built concrete infrastructure has elapsed, a common practice is that the demolished concrete is crushed and recycled, then incorporated into new construction. LCA studies of CO2 emissions focus on the manufacturing and construction and occupancy/utilization phases, without consideration of the demolition and application of recycled concrete into a secondary construction application. Concrete has a documented ability to chemically react with airborne carbon dioxide (CO2); however, carbon capture (or carbonation) by concrete during the primary and secondary life, is not considered in LCA models. This paper incorporates CO2 capture during both primary and secondary life into an LCA model for built concrete.  相似文献   

6.

Purpose  

The demand of PET bottles has increased rapidly in the past decades. The purpose of this study is to understand the environmental impact of PET recycling system, in which used bottles are recycled into both fibre and bottles, and to compare the recycling system with single-use PET.  相似文献   

7.

Background  

The thiomethyl group of S-adenosylmethionine is often recycled as methionine from methylthioadenosine. The corresponding pathway has been unravelled in Bacillus subtilis. However methylthioadenosine is subjected to alternative degradative pathways depending on the organism.  相似文献   

8.

Background, Aim and Scope  

By using recycled aluminium or by disposing used aluminium products for recycling, it is normal LCA practice to give a credit for the avoided production of primary or recycled aluminium. Lately, consequential approaches have been suggested to qualify and quantify this credit in terms of market mechanisms. Depending on supply, demand and price elasticity of primary products and scrap products, a mixed share of primary and recycled material may be credited. Aluminium, having high energy consumption for its primary production and low energy consumption for recycling, is very sensitive concerning whether production of primary or recycled aluminium is avoided. This paper includes presentations of aluminium products which are typically made from primary and from recycled aluminium. This is essential concerning which production may be avoided. Examples of market mechanism parameters of aluminium for consequential LCA are given.  相似文献   

9.

Introduction

In this series of papers, we present a poly(methyl methacrylate) (PMMA) recycling system design based on environmental impacts, chemical hazards, and resource availability. We evaluated the recycling system by life cycle assessment, environment, health, and safety method, and material flow analysis.

Purpose

Previous recycling systems have not focused on highly functional plastics such as PMMA, partly because of lower available volumes of waste PMMA compared with other commodity plastics such as polyethylene or polypropylene. However, with the popularization of PMMA-containing products such as liquid crystal displays, the use of PMMA is increasing and this will result in an increase in waste PMMA in the future. The design and testing of recycling systems and technologies for treating waste PMMA is therefore a high research priority. In this study, we analyze recycling of PMMA monomers under a range of scenarios.

Methods

Based on the differences between PMMA grades and their life cycles, we developed a life cycle model and designed a range of scenarios for PMMA recycling. We obtained monomer recycling process inventory data based on the operational results of a pilot plant. Using this process inventory data, we quantified life cycle greenhouse gas (LC-GHG) emissions and fossil resource consumption, and we calculated the LIME single index.

Results and discussion

PMMA produces more than twice the amount of GHG emissions than other commodity resins. Through scenario and sensitivity analyses, we demonstrated that monomer recycling is more effective than mechanical recycling. Operational modifications in the monomer recycling process can potentially decrease LC-GHG emissions.

Conclusions

Highly functional plastics should be recycled while maintaining their key functions, such as the high transparency of PMMA. Monomer recycling has the potential to achieve a closed-loop recycling of PMMA.  相似文献   

10.

Background, aim, and scope  

This paper summarises the critical review process according to ISO 14040/44 performed for the European Aluminium Association (EAA), Brussels. Scope of the review was a life cycle inventory (LCI) project, aiming at providing the life cycle assessment (LCA) community with reliable generic data relevant for the European aluminium market, including the production of aluminium ingot either from primary aluminium or from recycled aluminium and the fabrication of semi-finished products, i.e. sheet, foil or extrusion fabrication from aluminium ingots.  相似文献   

11.

Purpose  

Though the development of biofuel has attracted numerous studies for quantifying potential water demand applying life cycle thinking, the impacts of biofuel water consumption still remain unknown. In this study, we aimed to quantify ecological impact associated with corn-based bioethanol water consumption in Minnesota in responding to different refinery expansion scenarios by applying a life cycle impact assessment method.  相似文献   

12.

Purpose  

In general, pentachloroaniline (PCA) biodechlorination is specific to the conditions of a system; such conditions include the type and concentration of electron donors and oxidizing agents as well as nutrient availability, pH, and temperature. In the bioremediation of contaminated sediments and soil, most researchers have focused on the ability of various electron donors to remove target compounds. However, the amended electron donors and the byproduct of the anoxic/anaerobic systems may cause more environmental impact. Therefore, methods for consistently evaluating the environmental effects of such electron donors and byproducts are highly needed. Accordingly, life cycle assessment (LCA) was carried out to estimate the environmental effect of PCA biodechlorination under acidogenic/methanogenic conditions through laboratory-scale experiments. Four scenarios, intended to assess the influence of electron donors on the environment and develop laboratory experimental research, were compared. In these scenarios, four compounds were used: acetate, lactate, methanol, and glucose + methanol.  相似文献   

13.

Background  

The complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios. Their number, however, can be dramatically reduced by the simultaneous consideration of various bioenergetic, physical, and geological constraints.  相似文献   

14.

Background

Evaluating the net exchange of greenhouse gas (GHG) emissions in conjunction with soil carbon sequestration may give a comprehensive insight on the role of agricultural production in global warming.

Materials and Methods

Measured data of methane (CH4) and nitrous oxide (N2O) were utilized to test the applicability of the Denitrification and Decomposition (DNDC) model to a winter wheat – single rice rotation system in southern China. Six alternative scenarios were simulated against the baseline scenario to evaluate their long-term (45-year) impacts on net global warming potential (GWP) and greenhouse gas intensity (GHGI).

Principal Results

The simulated cumulative CH4 emissions fell within the statistical deviation ranges of the field data, with the exception of N2O emissions during rice-growing season and both gases from the control treatment. Sensitivity tests showed that both CH4 and N2O emissions were significantly affected by changes in both environmental factors and management practices. Compared with the baseline scenario, the long-term simulation had the following results: (1) high straw return and manure amendment scenarios greatly increased CH4 emissions, while other scenarios had similar CH4 emissions, (2) high inorganic N fertilizer increased N2O emissions while manure amendment and reduced inorganic N fertilizer scenarios decreased N2O emissions, (3) the mean annual soil organic carbon sequestration rates (SOCSR) under manure amendment, high straw return, and no-tillage scenarios averaged 0.20 t C ha−1 yr−1, being greater than other scenarios, and (4) the reduced inorganic N fertilizer scenario produced the least N loss from the system, while all the scenarios produced comparable grain yields.

Conclusions

In terms of net GWP and GHGI for the comprehensive assessment of climate change and crop production, reduced inorganic N fertilizer scenario followed by no-tillage scenario would be advocated for this specified cropping system.  相似文献   

15.

Background, aim, and scope  

Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation technologies was reviewed. Remediation of a contaminated site reduces a local environmental problem, but at the same time, the remediation activities may cause negative environmental impacts on the local, regional, and global scale. LCA can be used to evaluate the inherent trade-off and to compare remediation scenarios in terms of their associated environmental burden.  相似文献   

16.

Purpose

This paper compares environmental impacts of two packaging options for contrast media offered by GE Healthcare: +PLUSPAK? polymer bottle and traditional glass bottle. The study includes all relevant life cycle stages from manufacturing to use and final disposal of the bottles and includes evaluation of a variety of end-of-life disposal scenarios. The study was performed in accordance with the international standards ISO 14040/14044, and a third-party critical review was conducted.

Methods

The functional unit is defined as the packaging of contrast media required to deliver one dose of 96 mL to a patient for an X-ray procedure. Primary data are from GE Healthcare and its suppliers; secondary data are from the ecoinvent database and the literature. A variety of end-of-life disposal scenarios are explored using both cutoff and market-based allocation. Impact assessment includes human health (midpoint) and ecosystems and resources (end point) categories from ReCiPe (H) and cumulative energy demand. Sensitivity analyses include (1) bottle size, (2) secondary packaging, (3) manufacturing electricity, (4) glass recycled content, (5) scrap rate, (6) distribution transport, (7) contrast media, and (8) choice of impact assessment method. Uncertainty analysis is performed to determine how data quality affects the study conclusions.

Results and discussion

This study indicates that the polymer bottle outperforms the glass bottle in every environmental impact category considered. Bottle components are the most significant contributors, and the vial body has the highest impacts among bottle components for both polymer and glass bottles. The polymer bottle exhibits lower impact in all impact categories considered regardless of the following: end-of-life treatment (using either cutoff or market-based allocation), bottle size, manufacturing electricity grid mix, glass recycled content, scrap rate, contrast media, distribution transport (air vs. ocean), and choice of impact assessment method. Secondary packaging can be a major contributor to impact. The polymer bottle has considerably lower impact compared to the glass bottle for all multi-pack configurations, but the comparison is less clear for single-pack configurations due to significantly higher packaging material used per functional dose, resulting in proportionally higher impacts in all impact categories.

Conclusions

The lower impacts of the polymer bottle for this packaging application can be attributed to lower material and manufacturing impacts, lower distribution impacts, and lower end-of-life disposal impacts. The results of this study suggest that using polymer rather than glass bottles provides a means by which to lower environmental impact of contrast media packaging.  相似文献   

17.

Background  

In the years 2000 and 2002, the German Environment Agency in Berlin (UBA) published the results of a comprehensive LCA study on beverage containers comprising aluminium cans with volumes of 330 ml and 500 ml. Starting with the aluminium can scenarios and the respective results obtained during the UBA study, additional analyses were performed by IFEU in 2003, a German consultant having been a member of the project team working on the UBA study. The objective was to examine the influence of selected parameters on the LCA profile of carbonated soft drink containers. Data and method were in complete analogy with the LCI and LCA part of the UBA study.  相似文献   

18.

Background  

Tularemia was reported in China over 50 years ago, however, many epidemical characteristics remain unclear. In the present study, the prevalence of Francisella tularensis in ticks was investigated during an epidemiological surveillance in China and then we measured their genetic diversity by conducting multiple-locus variable- number tandem repeat analysis (MLVA).  相似文献   

19.

Background, aim and scope  

In spite of a number of lingering issues, life cycle assessment (LCA) is widely recognised as one of the most powerful tools to investigate the environmental performance of a product or service. Carbon footprint (CF) analysis can also be considered a subset of LCA, limited to a single impact category (i.e. global warming potential (GWP)). However, the inherent complexity of a full LCA or CF analysis often stands in the way of their widespread application in the industry and policy-making sectors. For these latter ambits, this paper advocates the adoption of tailor-made streamlined approaches, with reduced inventory requirements and impact assessment scope. Two such examples are provided, respectively addressing the evaluation of GWP in the development of new product standards and the GWP savings attainable through the use of recycled materials.  相似文献   

20.

Background  

Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory only consider very simple demographic scenarios of population size changes, such as exponential growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号