首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioautographic determinations of 125I-[Tyr0,D-Trp8]somatostatin-14 (125I-SRIF) binding sites were performed on frozen serial sections of the locus coeruleus (LC) of control rats and of rats subjected to either bilateral microinjections of 6 hydroxydopamine (6-OHDA) into the LC or unilateral microinjection into the ascending noradrenergic bundles. These experiments were performed in order to determine whether 125I-SRIF binding was localized to noradrenergic-containing cells and in which regions the cells which contain the binding sites are projecting. The extent of the lesions was assessed by measuring norepinephrine (NE) levels in the hippocampus (88% decrease as compared to sham-operated animals) for bilateral LC lesions and in the frontal cortex (87% reduction vs. contralateral side) for unilateral bundle lesions. In control rats, 125I-SRIF binding sites were restricted to the boundaries of the LC and followed closely the distribution of tyrosine hydroxylase-labeled cells. Three weeks after bilateral injections of 6-OHDA, 125I-SRIF binding decreased by 79% in all regions of the LC. In contrast, unilateral destruction of the ascending noradrenergic bundles resulted in a moderate decrease only in the middle part of the LC with a more important effect in the dorsal (55%) than in the ventral (24%) portion of the nucleus. These data demonstrate that: 1) most SRIF receptors in the LC are located in the vicinity of NE-containing cell bodies and 2) NE-containing cells bearing SRIF receptors project to the forebrain as well as to other terminal areas located more caudally in the brain. These data suggest a general role for SRIF in the control of the multiple functions of the LC.  相似文献   

2.
Localization in rat CNS of the acceptors for botulinum neurotoxin (types A and B) was examined by lesioning of cholinergic input to the cortex and immuno-affinity purification of cholinergic nerve terminals. Ibotenic acid lesions of the cortical cholinergic tract caused a small reduction in the content of high affinity binding sites for type A neurotoxin and a concomitant decrease in the activities of acetylcholinesterase and choline acetyltransferase. No such change was observed in the level of acceptors for BoNT B or the extent of immuno-labelling of Chol-I, a cholinergic ganglioside. Purification of cholinergic nerve terminals, using anti-(Chol-I) antibodies gave an equivalent enrichment in the acceptors (high and low affinity) for both toxin types and choline acetyltransferase. Neurotoxin type B (but not type A) inhibited binding of anti-(Chol-I) antibodies to this cholinergic ganglioside on nerve terminals and to semi-purified Chol-I. It can be deduced from these collective findings that the high affinity binding sites for BoNT A and possibly B are localized on cholinergic nerve terminals in the CNS and that the Chol-I ganglioside may be associated with the acceptor for type B toxin.  相似文献   

3.
Six days after the unilateral intrastriatal injection of 30 ug 6-hydroxydopamine (6-OHDA) the number of stereospecific 3H-dopamine and 3H-apomorphine binding sites (Bmax) was reduced by 50-60% in the caudate nucleus ipsilateral to the lesion. The dopamine content of the lesioned caudate nucleus was also reduced to 2% of the contralateral side or of sham-operated controls. The preincubation of depleted homogenates with added dopamine reversed the effects of 6-OHDA on the Bmax of 3H-agonists. A similar pattern of depletion, decrease in binding and in vitro reversal by dopamine was observed after a single injection of reserpine (4.0 mg/kg, im.). The intrastriatal injection of kainic acid also lowered the Bmax of 3H-agonists by 65% without altering dopamine content. Preincubation of homogenates of kainic acid-lesioned caudate nuclei with 355 nM (endogenous) dopamine did not reverse the decrease in binding. We conclude that treatments which deplete endogenous dopamine, including the lesion of nigrostriatal terminals, induce a reversible change in the parameters of 3H-agonist binding whereas the destruction of intrinsic caudate neurons with kainic acid results in an irreversible loss of receptors.  相似文献   

4.
Specific binding sites for angiotensin II were localized in the developing rat kidney (18th day of pregnancy and immediately before birth) by autoradiography using [125I]-ileu-5-angiotensin II either perfused in vivo through the fetal aorta or added in vitro to frozen sections in an incubation mixture. Specific binding was localized in the walls of the afferent and efferent arterioles, in the intraglomerular cells and in the peritubular arterioles of the subcapsular cortical zone. The immunohistochemical analysis, carried out on receptors saturated with unlabelled angiotensin II perfused through the mother's aorta, confirmed the autoradiographical localization. Antisera against ileu-5-angiotensin II were used in the indirect immunofluorescence technique and in the PAP method. Immunolocalization of angiotensin II was also found in the proximal tubule and in the thick ascending limb of Henle's loop.  相似文献   

5.
Specific and high affinity binding sites for angiotensin II were demonstrated in the membranes of the developing rat metanephros during the second half of pregnancy and in the newborn by binding studies with 125I angiotensin II. Only one type of angiotensin receptor was found during intrauterine life while after birth two classes of angiotensin receptors were present in the membranes of the cortical renal tissue.  相似文献   

6.
Several studies have shown anatomical and functional interconnections between catecholaminergic and somatostatinergic systems. To assess whether somatostatin (SS) may act presynaptically on catecholamine neurons, SS receptors were measured using radioligand test-tube binding assays on synaptosomes from hippocampus and frontoparietal cortex--areas that are innervated by catecholaminergic neurons with different densities and that have a high number of SS receptors--from control and 6-hydroxydopamine (6-OHDA)-treated rats. Intracerebroventricular (i.c.v.) injection of the catecholamine neurotoxin 6-OHDA (0.78 mg free base/kg of body weight in saline with 0.1% ascorbic acid) lowered hippocampal and frontoparietal cortical noradrenaline (NA) and dopamine (DA) levels at 1 week following the injection. Pretreatment of rats with desmethylimipramine (DMI) (40 mg/kg, intraperitoneal) prevented the drop in NA levels, but was not effective in attenuating DA depletion in the two brain areas studied. Treatment with 6-OHDA lowered the number of 125I-Tyr11-SS receptors in the hippocampus (130 +/- 19 vs. 266 +/- 16 fmol/mg protein, P < 0.001), whereas in the frontoparietal cortex a non significant 20% reduction in receptor number was found. The dissociation constants of 125I-Tyr11-SS binding to synaptosomes from frontoparietal cortex (0.65 +/- 0.06 vs. 0.60 +/- 0.04, P not significant) and hippocampus (0.44 +/- 0.04 vs. 0.63 +/- 0.14, P not significant) were similar in control and treated groups. Pretreatment with DMI reversed up to 80% of the effect of 6-OHDA on hippocampus SS receptors. DMI alone had no observable effect on the number and affinity of SS receptors. The 6-OHDA and the DMI treatment did not affect SLI levels in the brain areas studied. These results suggest that a portion of the hippocampal SS receptors may be localized presynaptically on the noradrenergic and dopaminergic nerve terminals.  相似文献   

7.
E. Szigethy  G. L. Wenk  A. Beaudet 《Peptides》1988,9(6):1227-1234
We have previously shown by combined radioautography and acetylcholinesterase histochemistry that the distribution of 125I-neurotensin (NT) binding sites was in register with that of cholinergic neurons in the rat nucleus basalis magnocellularis (NBM). The present study utilized three experimental approaches to elaborate on the type and cellular localization of NT binding sites in the NBM. Competition studies using levocabastine, a selective blocker of the low affinity NT binding component, revealed that most of the 125I-NT binding sites labeled in the NBM are of the levocabastine-insensitive high affinity type, known to correspond to the physiologically active receptor. Ibotenic acid-induced lesions of the NBM produced a marked reduction in both cholinesterase reactivity and cellular 125I-NT binding suggesting that most of the labeled sites are associated with the cholinergic neurons themselves rather than with an afferent input to those cells. Finally, examination of the high resolution radioautographic distribution of 125I-NT binding sites in semithin sections revealed that a proportion of 125I-NT-labeled receptors is associated with the plasma membrane of magnocellular perikarya and proximal processes, thereby providing an anatomical substrate for a local action of NT in the NBM.  相似文献   

8.
A selective increase in content of iron in the pars compacta of the substantia nigra has been implicated in the biochemical pathology of Parkinson's disease. Iron is thought to induce oxidative stress by liberation of oxygen free radicals from H2O2. Because 6-hydroxydopamine (6-OHDA) is thought to induce nigrostriatal dopaminergic neuronal lesions via metal-catalyzed free radical formation, the effect of the iron chelator desferrioxamine was investigated on 6-OHDA-induced dopaminergic neuron degeneration in the rat. Intracerebroventricular injection of 6-OHDA (250 micrograms) caused a 88, 79, and 70% reduction in striatal tissue content of dopamine (DA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid (HVA), respectively, and a 2.5-fold increase in DA release as indicated by the HVA/DA ratio. Prior injection of desferrioxamine (130 ng i.c.v.) resulted in a significant protection (approximately 60%) against the 6-OHDA-induced reduction in striatal DA content and a normalization of DA release. Dopaminergic-related behavioral responses, such as spontaneous movements in a novel environment and rearing, were significantly impaired in the 6-OHDA-treated group. By contrast, the desferrioxamine-pretreated rats exhibited almost normal behavioral responses. The ability of iron chelators to retard dopaminergic neurodegeneration in the substantia nigra may indicate a new therapeutic strategy in the treatment of Parkinson's disease.  相似文献   

9.
Six-hydroxydopamine (6-OHDA) was administered intraventricularly to 6-week-old male spontaneously hypertensive (SH) rats of the Okomoto strain and to normotensive rats of the Kyoto-Wistar strain. In addition, bilateral lateral tegmental lesions were placed in 35-40-day-old SH rats to interrupt ascending noradrenergic pathways. SH rats treated with 6-OHDA did not develop hypertension and had lower heart rates than control rats. Blood pressure and heart rate of Kyoto-Wistar animals were unaffected by the drug treatment. 6-OHDA produced widespread depletion of norepinephrine throughout the CNS of both SH and Kyoto-Wistar rats. Bilateral lateral tegmental lesions interrupted the dorsal noradrenergic bundle and depleted forebrain norepinephrine. These lesions did not prevent the development of hypertension and led to an increased heart rate. It is concluded that 6-OHDA does not produce its effect through a nonspecific lowering of blood pressure, but rather, that it interferes with the expression of the hypertensive syndrome. The lack of effect seen following depletion of forebrain norepinephrine as the result of interruption of the dorsal noradrenergic bundle indicates that the fibers destroyed by this lesion are not essential for the development of genetically determined hypertension.  相似文献   

10.
Abstract: The present study was undertaken to examine the adaptive changes occurring 1 and 6 months after moderate or severe unilateral 6-hydroxydopamine-induced lesions confined to the lateral part of the rat substantia nigra pars compacta (SNC). The expression of tyrosine hydroxylase (TH) enzyme was analyzed in the remaining dopaminergic nigral cell bodies and in the corresponding striatal nerve endings. In the cell bodies of the lesioned SNC, TH mRNA content was increased (+20 to +30%) 6 months after the lesion without changes in cellular TH protein amounts. The depletion of TH protein in the nerve terminal area was less severe than the percentage of cell loss observed in the SNC at 1- and 6-month postlesion intervals. Moreover, the decrease in TH protein in the ipsilateral striatum was less pronounced 6 months after lesion than 1 month after. That no corresponding change in TH protein content was observed in the cell bodies at a time when TH increased in nerve terminals suggests that the newly synthesized protein is probably rapidly transported to the striatal fibers. These results suggest the existence of a sequence of changes in TH expression between cell bodies and fibers, occurring spontaneously after partial denervation of the nigrostriatal pathway.  相似文献   

11.
The characteristics of [3H]Ro 5-4864 binding to "peripheral" benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of [3H]Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50%, respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of [3H]Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the Bmax of [3H]Ro 5-4864 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for [3H]Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion.  相似文献   

12.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

13.
Bacterial endotoxin induced a 38% decrease in the number of beta-adrenergic binding sites (Bmax) on splenic lymphocytes, four days after intraperitoneal administration to guinea pigs. No change in the affinity (Kd) for [125-I]-cyanopindolol ([125-I]-CYP) binding was observed. Incubation of guinea pig splenocytes in vitro with different concentrations of bacterial endotoxin for 24 hours resulted in an increased incorporation of [3H]-thymidine, a parameter for lymphocyte activation. Activation of splenic lymphocytes with the optimal endotoxin concentration of 100 micrograms/ml for 24 hours induced a 27% decrease in the Bmax whereas the Kd for [125-I]-CYP binding was not changed. Based on these findings, we speculate that activation of lymphocytes with endotoxin in vitro and in vivo is associated with a reduction in the number of beta-adrenergic binding sites on these cells. Anterior hypothalamic (AHA) lesions protected against the endotoxin-induced reduction in the number of beta-adrenergic binding sites on lymphocytes. The protective effect of these lesions could not be related to alterations in the plasma levels of cortisol, triiodothyronine (T3), thyroxine (T4), adrenaline and noradrenaline or to splenic noradrenaline content. Since AHA lesions have been shown to inhibit several lymphocyte functions, it is suggested that these lesions prevent lymphocyte activation after in vivo endotoxin administration and through this abrogate the reduction of the beta-adrenergic binding sites.  相似文献   

14.
R C Speth  T T Dinh  S Ritter 《Peptides》1987,8(4):677-685
Angiotensin II (Ang II) receptor binding sites in the dorsomedial medulla of intact and unilaterally nodose ganglionectomized rats were identified and characterized using 125I-sarcosine,isoleucine Ang II. This radioligand bound saturably and with high affinity to rat brain homogenates and to sections of rat brainstem. Specific (1 microM angiotensin II displaceable) binding of 125I-sarcosine,isoleucine Ang II was displaced by angiotensin analogues with a potency order similar to that described for angiotensin II receptors. Unilateral nodose ganglionectomy caused a reduction in Ang II receptor binding in the medial solitary tract nucleus, dorsal motor nucleus of the vagus, and area postrema ipsilateral to the lesioned ganglion. This observation suggests that Ang II receptors in the dorsomedial medulla may be located on axon terminals of vagal afferents and cell bodies of vagal efferents.  相似文献   

15.
We examined the effects of treatments affecting norepinephrine release on the number of norepinephrine reuptake recognition sites as reflected by desipramine binding. To do this, we used manipulations having similar presynaptic but contrasting postsynaptic effects. Presynaptic inhibition by 6-hydroxydopamine lesion or by clonidine, and postsynaptic receptor stimulation by isoproterenol, reduced desipramine binding. Presynaptic stimulation by d-amphetamine and postsynaptic receptor blockade by prazosin increased desipramine binding. Similar effects and binding properties were seen in cerebral cortex, heart, and soleus muscle. After unilateral noradrenergic lesions, reduction in desipramine binding correlated with reduction in norepinephrine uptake. These results show that norepinephrine reuptake appears to be regulated by transmitter release regardless of effects on postsynaptic transmission, and that this regulation is analogous in the central and sympathetic nervous systems.  相似文献   

16.
Nicotinic cholinergic receptor binding sites labeled by [3H]acetylcholine were measured in the cerebral cortices, thalami, striata, and hypothalami of rats lesioned by intraventricular injection of either 6-hydroxydopamine or 5, 7-dihydroxytryptamine. In addition, [3H]acetylcholine binding sites were measured in the cerebral cortices of rats lesioned by injection of ibotenic acid into the nucleus basalis magnocellularis. [3H]Acetylcholine binding was significantly decreased in the striata and hypothalami of both 6-hydroxydopamine- and 5,7-dihydroxytryptamine-lesioned rats. There was no change in binding in the cortex or thalamus by either lesion. Ibotenic acid lesions of the nucleus basalis magnocellularis, which projects cholinergic axons to the cortex, did not alter [3H]acetylcholine binding. These results provide evidence for a presynaptic location of nicotinic cholinergic binding sites on catecholamine and serotonin axons in the striatum and hypothalamus.  相似文献   

17.
Selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, high-affinity choline uptake) were studied in the hindlimb representation areas of the rat somatosensory cortex and within the visual cortex 1 to 63 days after unilateral transection of the sciatic nerve. In the contralateral somatosensory cortex, peripheral deafferentation resulted in a significant reduction of choline acetyltransferase activity (by 15%) 3 days after sciatic nerve injury, and in a significant reduction of high-affinity choline uptake (by 30%) 1 day after nerve transection, in comparison to untreated control rats. Investigations in individual cortical layers revealed that the decrease of both choline acetyltransferase activity and high-affinity choline uptake sites was mainly due to reductions in cortical layer V. Acetylcholinesterase activity and [3H]quinuclidinyl benzilate binding to muscarinic acetylcholine receptors were not affected by unilateral transection of the sciatic nerve. In the ipsilateral somatosensory cortex, as well as in the visual cortex at both cortical hemispheres, no significant changes in the cholinergic parameters studied could be detected. The data indicate that peripheral deafferentation of the somatosensory cortex results in a transient change of presynaptic cholinergic parameters within the affected somatosensory area as early as 1 to 3 days after the lesion; thus, they emphasize the involvement of cholinergic mechanisms in cortical reorganizational events.  相似文献   

18.
海马内NA能神经损毁对抗急性低氧诱发皮质酮分泌   总被引:1,自引:0,他引:1  
Zhu XM  Zhu ZT  Wen CJ  Zhou YQ 《生理学报》1999,51(3):356-360
本工作观察了6羟多巴胺(6hydroxydopamine,6OHDA)损毁大鼠腹侧海马去甲肾上腺素能神经对急性低氧诱发皮质酮分泌的影响。结果显示,吸入104%O230min后血浆皮质酮水平显著升高,6OHDA注入腹侧海马致使海马内去甲肾上腺素(NA)含量降低(-385%);血浆皮质酮水平也较未损毁组为低(-332%)。吸入104%O2后,皮质酮对低氧刺激的反应性升高现象消失。结果提示:海马内NA可能参与急性低氧应激引发血浆皮质酮分泌的调节活动。  相似文献   

19.
Tyrosine hydroxylase (TH) mRNA and activity and concentrations of 3,4-dihydroxyphenylalanine (DOPA) and catecholamines were examined as markers of sympathetic innervation and catecholamine synthesis in peripheral tissues of sympathectomized and intact rats. Chemical sympathectomy with 6-hydroxydopamine (6-OHDA) markedly decreased norepinephrine and to a generally lesser extent TH activities and dopamine in most peripheral tissues (stomach, lung, testis, duodenum, pancreas, salivary gland, spleen, heart, kidney, thymus). Superior cervical ganglia, adrenals and descending aorta were unaffected and vas deferens showed a large 92% decrease in norepinephrine, but only a small 38% decrease in TH activity after 6-OHDA. Presence of chromaffin cells or neuronal cell bodies in these latter tissues, indicated by consistent expression of TH mRNA, explained the relative resistance of these tissues to 6-OHDA. Stomach also showed consistent expression of TH mRNA before, but not after 6-OHDA, suggesting that catecholamine synthesizing cells in gastric tissue are sensitive to the toxic effects of 6-OHDA. Tissue concentrations of DOPA were mainly unaffected by 6-OHDA, indicating that much of the DOPA in peripheral tissues is synthesized independently of local TH or sympathetic innervation. The differential effects of chemical sympathectomy on tissue catecholamines, DOPA, TH mRNA and TH activity demonstrate that these variables are not simple markers of sympathetic innervation or catecholamine synthesis. Other factors, including presence of neuronal cell bodies, parenchymal chromaffin cells, non-neuronal sites of catecholamine synthesis and alternative sources of tissue DOPA, must also be considered when tissue catecholamines, DOPA and TH are examined as markers of sympathetic innervation and local catecholamine synthesis.  相似文献   

20.
本实验用6-OHDA造成成年小白鼠领下腺化学性去交感神经,观察了神经生长因子对该神经的保护作用。6-OHDA(15mg/kgip)处理后24h腺体内去甲肾上腺素(NE)含量降至正常水平的2%以下。若在6-OHDA处理同时开始多次给予神经生长因子(NGF),则NE残留量明显提高。减小6-OHDA剂量至10mg/kg,NE残留量增加,同时NGF的作用亦较用6-OHDA15mg/kg时更为显著。若提前24h给予NGF,尽管仍显著提高NE残留量,但程度却显然低于与6-OHDA同时给予者。以上结果表明外源性NGF对6-OHDA造成交感神经化学性损毁有保护作用,此作用与神经受损的严重程度以及NGF处理时间有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号