首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The thermotropic properties and acyl chain packing characteristics of multilamellar dispersions of binary mixtures of 1-stearoyl-2-caprylphosphatidylcholine (C(18):C(10)PC), an asymmetric chain species, and dimyristoylphosphatidylcholine (C(14):C(14)PC), a symmetric chain lipid, were monitored by vibrational Raman spectroscopy. In order to examine each component of the binary mixture separately, the acyl chains of the symmetric chain species were perdeuterated. As shown by differential scanning calorimetry, the mismatch in the gel phase bilayer thickness between the two lipid components generates a lateral phase separation resulting in two distinct gel phases, G(I) and G(II), which coexist over much of the composition range. The Raman data demonstrate that the mixed interdigitated phase (three chains per headgroup), analogous to single component phase behavior, is retained when the C(18):C(10)PC component act as a host for the G(I) gel phase. In contrast, the C(18):C(10)PC molecules exhibit partial interdigitation (two chains per headgroup) when they are included as guests within the C(14):C(14)PC host matrix to form the G(II) gel phase. Compared to pure C(14):C(14)PC bilayers at equivalent reduced temperatures, the host G(II) gel phase C(14):C(14)PC molecules exhibit an increased acyl chain order, while for the host G(I) gel phase the C(14):C(14)PC lipid species show increased intrachain disorder.  相似文献   

2.
The bilayer phase transitions of palmitoylstearoyl-phosphatidylcholine (PSPC), diheptadecanoyl-PC (C17PC) and stearoylpalmitoyl-PC (SPPC) which have the same total carbon numbers in the two acyl chains were observed by differential scanning calorimetry and high-pressure optical method. As the temperature increased, these bilayers exhibited four phases of the subgel (Lc), lamellar gel (L beta'), ripple gel (P beta') and liquid crystal (L alpha), in turn. The Lc phase was observed only in the first heating scan after cold storage. The temperatures of the phase transitions were almost linearly elevated by applying pressure. The temperature-pressure phase diagrams and the thermodynamic quantities associated with the phase transitions were compared among the lipid bilayers. For all the bilayers studied, the pressure-induced interdigitated gel (L beta I) phase appeared above the critical interdigitation pressure (CIP) between the L beta' and P beta' phases. The CIPs for the PSPC, C17PC and SPPC bilayers were found to be 50.6, 79.1 and 93.0 MPa, respectively. Contribution of two acyl chains to thermodynamic properties for the phase transitions of asymmetric PSPC and SPPC bilayers was not even. The sn-2 acyl chain lengths of asymmetric PCs governed primarily the bilayer properties. The fluorescence spectra of Prodan in lipid bilayers showed the emission maxima characteristic of bilayer phases, which were dependent on the location of Prodan in the bilayers. Second derivative of fluorescent spectrum exhibited the original emission spectrum of Prodan to be composed of the distribution of Prodan into multiple locations in the lipid bilayer. The F'497/F'430 value, a ratio of second derivative of fluorescence intensity at 497 nm to that at 430 nm, is decisive evidence whether bilayer interdigitation will occur. With respect to the L beta'/L beta I phase transition in the SPPC bilayer, the emission maximum of Prodan exhibited the narrow-range red-shift from 441 to 449 nm, indicating that the L beta I phase in the SPPC bilayer has a less polar "pocket" formed by a space between uneven terminal methyl ends of the sn-1 and sn-2 chains, in which the Prodan molecule remains stably.  相似文献   

3.
S Li  H N Lin  G Wang    C Huang 《Biophysical journal》1996,70(6):2784-2794
The biphasic effect of ethanol on the main phase transition temperature (Tm) of identical-chain phosphatidyl-cholines (PCs) in excess H2O is now well known. This biphasic effect can be attributed to the transformation of the lipid bilayer, induced by high concentrations of ethanol, from the partially interdigitated L beta, phase to the fully interdigitated L beta I phase at T < Tm. The basic packing unit of the L beta I phase has been identified recently as a binary mixture of PC/ethanol at the molar ratio of 1:2. The ethanol effect on mixed-chain PCs, however, is not known. We have thus in this study investigated the alcohol effects on the Tm of mixed-chain PCs with different delta C values, where delta C is the effective acyl chain length difference between the sn-1 and sn-2 acyl chains. Initially, molecular mechanics (MM) simulations are employed to calculate the steric energies associated with a homologous series of mixed-chain PCs packed in the partially and the fully interdigitated L beta I motifs. Based on the energetics, the preference of each mixed-chain PC for packing between these two different motifs can be estimated. Guided by MM results, high-resolution differential scanning calorimetry is subsequently employed to determine the Tm values for aqueous lipid dispersions prepared individually from a series of mixed-chain PCs (delta C = 0.5-6.5 C-C bond lengths) in the presence of various concentrations of ethanol. Results indicate that aqueous dispersions prepared from mixed-chain PCs with a delta C value of less than 4 exhibit a biphasic profile in the plot of Tm versus ethanol concentration. In contrast, highly asymmetric PCs (delta C > 4) do not exhibit such biphasic behavior. In the presence of a longer chain n-alcohol, however, aqueous dispersions of highly asymmetric C(12):C(20)PC (delta C = 6.5) do show such biphasic behavior against ethanol. Our results suggest that the delta C region in a highly asymmetric PC packed in the L beta I phase is most likely the binding site for n-alcohol.  相似文献   

4.
S W Hui  C H Huang 《Biochemistry》1986,25(6):1330-1335
X-ray diffraction experiments have been performed on 1-stearoyllysophosphatidylcholine or C(18):C(0)PC as a function of hydration at temperatures below the order/disorder transition (Tm = 26.2 degrees C). At these temperatures, hydrated C(18):C(0)PC forms lamellae. The bilayer thickness, as determined by the saturation hydration method and electron-density profile, is 35-36 A, and the average area per C(18):C(0)PC molecule at the lipid/water interface is 45.5 A2. The packing geometry of C(18):C(0)PC in the lamella is proposed to adopt a fully interdigitated model in which the long C(18) acyl chain extends across the entire hydrocarbon width of the bilayer. Thus far, three different types of interdigitated bilayers are known for phosphatidylcholines. These various types of chain interdigitation are discussed in terms of the chain length difference between the sn-1 and sn-2 acyl chains.  相似文献   

5.
Raman spectra of aqueous dispersions of 1,2-dipalmitoyl-phosphatidylcholine (DPPC) have been measured as a function of pressure (up to 46 kbar) for samples incubated at 2°C and for nonincubated DPPC samples subjected to equally high pressure. The nature of the transition from the GII gel phase of the hydrated lipid into the subgel phase on incubation is entirely different from that of the transition from the GII gel phase into the GIII gel phase of the nonincubated lipid. The GIII gel phase has a monoclinic interchain packing, while the subgel phase exhibits a triclinic interchain structure. It is shown that pressure cannot induce the transition from the GII gel phase to the subgel phase; however, it does stabilize the subgel phase above the subtransition temperature. The mechanism for the formation of the subgel phase and the complex phase behavior of the gel phase of DPPC are rationalized in terms of the dynamic properties of the acyl chains of the lipid molecule.  相似文献   

6.
Mixed-chain phosphatidylcholine bilayers: structure and properties   总被引:10,自引:0,他引:10  
J Mattai  P K Sripada  G G Shipley 《Biochemistry》1987,26(12):3287-3297
Calorimetric and X-ray diffraction data are reported for two series of saturated mixed-chain phosphatidylcholines (PCs), 18:0/n:0-PC and n:0/18:0-PC, where the sn-1 and sn-2 fatty acyl chains on the glycerol backbone are systematically varied by two methylene groups from 18:0 to 10:0 (n = 18, 16, 14, 12, or 10). Fully hydrated PCs were annealed at -4 degrees C and their multilamellar dispersions characterized by differential scanning calorimetry and X-ray diffraction. All mixed-chain PCs form low-temperature "crystalline" bilayer phases following low-temperature incubation, except 18:0/10:0-PC. The subtransition temperature (Ts) shifts toward the main (chain melting) transition temperature (Tm) as the sn-1 or sn-2 fatty acyl chain is reduced in length; for the shorter chain PCs (18:0/12:0-PC, 12:0/18:0-PC, and 10:0/18:0-PC), Ts is 1-2 degrees C greater than Tm, and the subtransition enthalpy (delta Hs) is much greater than for the longer acyl chain PCs. Tm decreases with acyl chain length for both series of PCs except 18:0/10:0-PC, while for the positional isomers, n:0/18:0-PC and 18:0/n:0-PC, Tm is higher for the isomer with the longer acyl chain in the sn-2 position of the glycerol backbone. The conversion from the crystalline bilayer Lc phase to the liquid-crystalline L alpha phase with melted hydrocarbon chains occurs through a series of phase changes which are chain length dependent. For example, 18:0/18:0-PC undergoes the phase changes Lc----L beta'----P beta'----L alpha, while the shorter chain PC, 10:0/18:0-PC, is directly transformed from the Lc phase to the L alpha phase. However, normalized enthalpy and entropy data suggest that the overall thermodynamic change, Lc----L alpha, is essentially chain length independent. On cooling, the conversion to the Lc phases occurs via bilayer gel phases, L beta', for the longer chain PCs or through triple-chain interdigitated bilayer gel phases, L beta, for the shorter chain PC 18:0/12:0-PC and possibly 10:0/18:0-PC. Molecular models indicate that the bilayer gel phases for the more asymmetric PC series, 18:0/n:0-PC, must undergo progressive interdigitation with chain length reduction to maintain maximum chain-chain interaction. The L beta phase of 18:0/10:0-PC is the most stable structure for this PC below Tm. The formation and stability of the triple-chain structures can be rationalized from molecular models.  相似文献   

7.
Raman and infrared spectra of fully hydrated bilayers of 1,2-dioleoyl phosphatidylcholine (DOPC) were measured at increasing hydrostatic pressures up to -37 kbar. Under ambient conditions aqueous dispersions of DOPC are in the liquid crystalline state. The application of an external hydrostatic pressure induces conformational and dynamic ordering processes in DOPC, which trigger a first-order structural phase transition at 5 kbar from a disordered liquid crystalline state to a highly ordered gel state. In the gel phase the methylene chains of each molecule are fully extended and the two all-trans chain segments on both sides of the rigid cis double bond form a bent structure. The bent oleoyl chains in each molecule, as well as in neighboring molecules are packed parallel to each other. To achieve this parallel interchain packing, the double bonds of the sn-1 and sn-2 chains of each molecule must be aligned at the same position with respect to the bilayer interface which is achieved by a rotation of the C—C bonds in the glycerol moiety in the head group. The extremely strong interchain interactions in the gel phase of DOPC are unique for this lipid with cis dimono-unsaturated acyl chains. Our experimental results suggest that in the pressure-induced gel phase of DOPC the olefinic CH bonds are rotated out of the phase of the bent oleoyl chains and that the oleoyl chains of opposing bilayers bend towards opposite directions.  相似文献   

8.
In an attempt to investigate systematically the effects of various single and multiple cis carbon-carbon double bonds in the sn-2 acyl chains of natural phospholipids on membrane properties, we have de novo synthesized unsaturated C20 fatty acids comprised of single or multiple methylene-interrupted cis double bonds. Subsequently, 15 molecular species of phosphatidylethanolamine (PE) with sn-1 C20-saturated and sn-2 C20-unsaturated acyl chains were semi-synthesized by acylation of C20-lysophosphatidylcholine with unsaturated C20 fatty acids followed by phospholipase D-catalyzed base-exchange reaction in the presence of excess ethanolamine. The gel-to-liquid crystalline phase transitions of these 15 mixed-chain PE, in excess H2O, were investigated by high resolution differential scanning calorimetry. In addition, the energy-minimized structures of these sn-1 C20-saturated/sn-2 C20-unsaturated PE were simulated by molecular mechanics calculations. It is shown that the successive introduction of cis double bonds into the sn-2 acyl chain of C(20):C(20)PE can affect the gel-to-liquid crystalline phase transition temperature, Tm, of the lipid bilayer in some characteristic ways; moreover, the effect depends critically on the position of cis double bonds in the sn-2 acyl chain. Specifically, we have constructed a novel Tm diagram for the 15 species of unsaturated PE, from which the effects of the number and the position of cis double bonds on Tm can be examined simultaneously in a simple, direct, and unifying manner. Interestingly, the characteristic Tm profiles exhibited by different series of mixed-chain PE with increasing degree of unsaturation can be interpreted in terms of structural changes associated with acyl chain unsaturation.  相似文献   

9.
The influence of hydrocarbon chains on the temperature (TG-LC) of the gel to liquid-crystalline phase transition of model membranes has been investigated over an extensive variety of phosphatidylcholines (PC). The TG-LC is dependent upon the length of the hydrocarbon chains, on whether or not the chains are saturated or have been modified in some way, and on the position of any modification along the chain. For PC having two different acyl chains (heteroacid PC) in the sn-1 and sn-2 positions, the TG-LC is dependent on the chain position and on the inequivalence of chain penetration into the bilayer. Positional isomers of PC have different TG-LC. The first two double bonds introduced in each chain of a PC cause a much greater reduction in TG-LC and in the enthalpy change of the transition than does the subsequent introduction of additional double bonds. Dipolyunsaturated PC have uncooperative (broad) transitions that occur at low temperatures and have small enthalpy changes. While each PC has unique transitional characteristics, there are a number of patterns in the TG-LC which emerge on consideration of all the available data. One such pattern may be useful in predicting TG-LC from analytical data on the composition and positions of acyl chains of various lipids.  相似文献   

10.
S Ali  H N Lin  R Bittman  C H Huang 《Biochemistry》1989,28(2):522-528
High-resolution differential scanning calorimetry (DSC) has been used to study the aqueous dispersions of mixed-chain phosphatidylcholines prepared from colyophilized mixtures of C(18):C(11:1 delta 10) PC/C(18):C(10)PC and C(18):C(11:1 delta 10) PC/C(18):C(11)PC of various molar ratios. These mixed-chain phospholipids are characterized by a marked disparity in their acyl-chain lengths; however, the sn-1 acyl chain in the fully extended conformation is about twice as long as the sn-2 acyl chain. Their thermotropic behavior was determined, and the phase diagrams of these two mixtures were constructed from the calorimetric data. Results indicate that C(18):C(11:1 delta 10)PC/C(18):C(10)PC and C(18):C-(11:1 delta 10)PC/C(18):C(11)PC are miscible in all proportions with a near-ideal behavior of mixing in the gel and liquid-crystalline phases. Equimolar mixtures of diC(14)PC/C(18):C(11:1 delta 10)PC, diC(14)PC/C(18):C(10)PC, and diC(14)PC/C(18):C(11)PC have also been studied by DSC. These phosphatidylcholines in the 1:1 mixture differ in Tm by less than 11 degrees C; however, they exhibit gel-phase immiscibility in the plane of the bilayer. Taken together, these studies suggest that C(18):C(11)PC and C(18):C(11:1 delta 10)PC are packed similarly to C(18):C(10)PC in excess water as mixed interdigitated bilayers, at T less than Tm, which transform into partially interdigitated bilayers when heated above Tm.  相似文献   

11.
B Perly  I C Smith  H C Jarrell 《Biochemistry》1985,24(4):1055-1063
The thermotropic behavior and molecular properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-dihydrosterculoyl-sn-glycero-3-phosphoethanolamine (PDSPE) have been investigated by 2H NMR spectroscopy using samples selectively labeled at the 5'-, 9'-, 10'-, and 16'-positions of the sn-2 chains. Comparison with the corresponding phosphocholine analogues (POPC and PDSPC), obtained as intermediate synthetic products, was used to monitor the role of the polar head group. Replacement of the choline moiety by ethanolamine increased the gel to liquid-crystal transition temperature by 10-32 degrees C and led to a significantly higher ordering of the fatty acyl chains in the liquid-crystalline bilayer state. The lateral compression effect, due to the smaller area per polar head group in PE, results in a bilayer to hexagonal phase transition at elevated temperatures. The effects on both PC and PE due to replacement of the olefinic group by a cyclopropane unit are similar. A decrease in the temperature of the gel to liquid-crystal phase transition, Tc, is observed upon introduction of a cyclopropane ring; it goes from 26 degrees C in POPE to approximately 10 degrees C in PDSPE. In addition, a very significant broadening of the transition profile is observed. These observations are consistent with the poor packing ability of mixed saturated and cyclopropane-containing chains due to the bulky substituent effect. The temperature of the bilayer-hexagonal phase transition of PE samples was decreased by 15-20 degrees C on replacement of oleoyl chains by dihydrosterculoyl chains at the sn-2 position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Phosphatidylcholines (PCs) with stearoyl (18:0) sn-1 chains and variable-length, saturated sn-2 acyl chains were synthesized and investigated using a Langmuir-type film balance. Surface pressure was monitored as a function of lipid molecular area at various constant temperatures between 10 degrees C and 30 degrees C. Over this temperature range, 18:0-10:0 PC displayed only liquid-expanded behavior. In contrast, di-14:0 PC displayed liquid-expanded behavior at 24 degrees C and 30 degrees C, but two-dimensional phase transitions were evident at 20 degrees C, 15 degrees C, and 10 degrees C. The average molecular area of 18:0-10:0 PC was larger than that of liquid-expanded di-14:0 PC at equivalent surface pressures, and the shapes of their liquid expanded isotherms were somewhat dissimilar. Analysis of the elastic moduli of area compressibility (Cs(-1)) as a function of molecular area revealed shallower slopes in the semilog plots of 18:0-10:0 PC compared to di-14:0 PC. At membrane-like surface pressures (e.g., 30 mN/m), 18:0-10:0 PC was 20-25% more elastic (in an in-plane sense) than di-14:0 PC. Other PCs with varying degrees of chain-length asymmetry (18:0-8:0 PC, 18:0-12:0 PC, 18:0-14:0 PC, 18:0-16:0 PC) were also investigated to determine whether the higher in-plane elasticity of fluid-phase 18:0-10:0 PC is a common feature of PCs with asymmetrical chain lengths. Two-dimensional phase transitions in 18:0-14:0 PC and 18:0-16:0 PC prevented meaningful comparison with other fluid-phase PCs at 30 mN/m. However, the Cs(-1) values for fluid-phase 18:0-8:0 PC and 18:0-12:0 PC were similar to that of 18:0-10:0 PC (85-90 mN/m). These values showed chain-length asymmetrical PCs to have 20-25% greater in-plane elasticity than fluid-phase PCs with mono- or diunsaturated acyl chains.  相似文献   

13.
The purpose of this study was to test the hypothesis that lipid fluidity regulates lecithin:cholesterol acyltransferase (LCAT) activity. Phosphatidylcholine (PC) species were synthesized that varied in fluidity by changing the number, type (cis vs. trans), or position of the double bonds in 18 or 20 carbon sn-2 fatty acyl chains and recombined with [(3)H]cholesterol and apolipoprotein A-I to form recombinant high density lipoprotein (rHDL) substrate particles. The activity of purified human plasma LCAT decreased with PC sn-2 fatty acyl chains containing trans versus cis double bonds and as double bonds were moved towards the methyl terminus of the sn-2 fatty acyl chain. The decrease in LCAT activity was significantly correlated with a decrease in rHDL fluidity (measured by diphenylhexatriene fluorescence polarization) for PC species containing 18 carbon (r(2) = 0.61, n = 18) and 20 carbon (r(2) = 0.93, n = 5) sn-2 fatty acyl chains. rHDL were also made containing 10% of the 18 carbon sn-2 fatty acyl chain PC species and 90% of an inert PC ether matrix (sn-1 18:1, sn-2 16:0 PC ether) to normalize rHDL fluidity. Even though fluidity was similar among the PC ether-containing rHDL, the order of PC reactivity with LCAT was significantly correlated (r(2) = 0.71) with that of 100% PC rHDL containing the same 18 carbon sn-2 fatty acyl chain species, suggesting that PC structure in the active site of LCAT determines reactivity in the absence of measurable differences in bilayer fluidity. We conclude that PC fluidity and structure are major regulators of LCAT activity when fatty acyl chain length is constant.  相似文献   

14.
The thermotropic properties and acyl chain packing characteristics of multilamellar dispersions of highly unsaturated lipids were examined by Raman spectroscopy. Bilayer assemblies were composed of POPC (1-palmitoyl-2-oleoylphosphatidylcholine), PAPC (1-palmitoyl-2-arachidonylphosphatidylcholine), and PDPC (1-palmitoyl-2-docosahexaenoylphosphatidylcholine), lipid systems possessing saturated sn-1 chains and unsaturated sn-2 chains with one, four, and six double bonds, respectively. Raman spectra were recorded in the acyl chain 2800-3100-cm-1 carbon-hydrogen (C-H) stretching and 1100-1200-cm-1 carbon-carbon (C-C) stretching mode regions, spectral intervals reflecting both the inter- and intrachain order/disorder properties of the various lipid dispersions. In order to obtain C-H stretching mode spectra relevant solely to the sn-1 chains of PAPC and PDPC, liquid-phase spectra of arachidonic and docosahexaenoic acid, respectively, were subtracted from the observed phospholipid spectra. The unsaturated sn-2 chains of PAPC and PDPC undergo minimal conformational reorganizations as the bilayers pass from the gel to liquid-crystalline phases. Phase transition temperatures, Tm, derived from statistically fitting the temperature-dependent Raman spectral data are approximately -2.5, -22.5, and -3 degrees C for POPC, PAPC, and PDPC, respectively. As the degree of unsaturation increases from POPC to PAPC and PDPC, the cooperativity of the phase transition, as measured by its breadth, decreases. Estimates of the transition widths from the temperature profiles are approximately 15 degrees C for PAPC and 20 degrees C for PDPC. The behavior of various Raman spectral parameters for the lipid gel phase reflects the formation of lateral microdomains, or clusters, whose packing properties maximize the van der Waals interactions between sn-1 chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
High-pressure Fourier-transform infrared (FT-IR) spectroscopy was used to study the barotropic behavior of phosphatidylserine bilayers and their interactions with the local anesthetic tetracaine. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) in the absence and the presence of tetracaine at pH 5.5 and 9.5. The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results show that the barotropic behavior of the negatively charged phosphatidylserine bilayers is very similar to that observed for zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, with corresponding acyl chains. The results also indicate that the local anesthetic partitions into phosphatidylserine bilayers in an environment close to the membrane-water interface and interacts electrostatically with the lipid head group. Application of high hydrostatic pressure on the lipid-anesthetic systems results in the pressure-induced expulsion of the anesthetic from a membrane to an aqueous environment. The pressures required for expulsion of anesthetic from bilayers are much higher for the unsaturated lipid (DOPS) than for the saturated lipid (DMPS) (approximately 6 kbar vs approximately 2 kbar, respectively). Whereas incorporation of the anesthetic into DOPS bilayers does not affect significantly the structural and dynamic properties of the disordered acyl chains in the liquid-crystalline phase, it orders the DMPS acyl chains in the gel phase.  相似文献   

17.
H Xu  C H Huang 《Biochemistry》1987,26(4):1036-1043
The asymmetric C(18):C(10)PC molecules are known by X-ray diffraction to self-assemble, in excess water, into a lamellar structure known as the mixed interdigitated bilayer at T less than Tm. In this structure, the long C(18)-acyl chain is interdigitated fully across the entire hydrocarbon width of the bilayer, while the shorter C(10)-acyl chain, which is about half as long as the C(18)-acyl chain, packs end to end with a C(10)-acyl chain of another lipid molecule in the opposing bilayer leaflet. We have synthesized the following asymmetric phosphatidylcholines (PC's): C(16):C(9)PC, C(16):C(10)PC, C(18):C(10)PC, C(18):C(11)PC, C(20):C(11)PC, C(20):C(12)PC, C(22):C(12)PC, C(22):C(13)PC, C(8):C(18)PC, and C(10):C(22)PC. These 10 asymmetric phosphatidylcholines have a common characteristic; i.e., the length of the longer extended acyl chain is about twice as long as that of the shorter acyl chain. On the basis of the known lamellar structure of C(18):C(10)PC, we anticipate that these asymmetric phosphatidylcholines will also form mixed interdigitated bilayers. We have employed high-resolution differential scanning calorimetry (DSC) to investigate the thermotropic behavior of liposomes prepared from these asymmetric phosphatidylcholines. If our anticipation is correct, one would find that the thermodynamic data (Tm, delta H, or delta S) associated with the main thermal phase transitions of these asymmetric phosphatidylcholine dispersions will fit into a continuous curve as they are plotted as a function of the hydrocarbon width of the putative mixed interdigitated bilayer. Experimental data presented in this paper indeed bear this out. For comparison, a DSC study of multilamellar dispersions prepared from a series of saturated symmetric phosphatidylcholines has also been carried out.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Recent work within our laboratory has focused on the enzymes we hypothesize are involved in the biosynthesis of bis(monoacylglycerol)phosphate from phosphatidylglycerol. Here we describe a transacylase, active at acidic pH values, isolated from a macrophage-like cell line, RAW 264.7. This enzyme acylates the head group glycerol of sn-3:sn-1' lysophosphatidylglycerol to form sn-3:sn-1' bis(monoacylglycerol)phosphate. Here we demonstrate that this enzyme uses two lysophosphatidylglycerol molecules, one as an acyl donor and another as an acyl acceptor, and that the acyl contributions from all other lipids tested are comparatively minor. This enzyme prefers saturated acyl chains to monounsaturates, 16 and 18 carbon fatty acids over 14 carbon fatty acids, and saturated acyl chains at the sn-1 position to monounsaturated acyl chains on the sn-2 carbon of lysophosphatidylglycerol. We present data which show the transacylase activity depends on the presence of a lipid-water interface and the lipid polymorphic state.  相似文献   

19.
In order to compare the effects of cis and trans unsaturation on the structure and packing of phospholipid bilayers, infrared spectra of aqueous dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dielaidoyl-sn-glycero-3-phosphocholine (DEPC) were measured in a diamond anvil cell at 28 degrees C as a function of pressure up to 36 kbar. The infrared spectra indicate that DEPC and DOPC undergo pressure-induced liquid-crystalline to gel phase transitions at critical pressures of 0.7 and 5.2 kbar, respectively. Below their respective critical pressures, the infrared spectra of DOPC and DEPC are essentially indistinguishable, whereas above these pressures, there are very pronounced differences in the barotropic behavior of these two lipids. Specifically, at the 5.2-kbar transition in DOPC, there are significant changes in the frequencies, intensities, and widths of bands associated with the interfacial C = O groups, the olefinic CH = CH groups, and the terminal CH3 groups, whereas the corresponding bands of DEPC are, by contrast, relatively insensitive to the pressure-induced phase transition. The unusual band shape changes in DOPC are attributed to a unique packing arrangement of the oleoyl acyl chains required to accommodate the bent geometries of adjacent cis double bonds. Moreover, above 5 kbar in DEPC, well-defined correlation field splittings of the CH2 scissoring and rocking modes are observed, with magnitudes very similar to those observed at comparable pressures in saturated lipid systems. The absence of correlation field splittings of the corresponding bands of DOPC up to 36 kbar suggests that the bent oleoyl acyl chains are closely packed with all chains oriented parallel to each other.  相似文献   

20.
Previous studies from our laboratories have delineated the relationship between the acyl chain asymmetry of mixed-chain phosphatidylcholines, C(X):C(Y)PC, and the effect of ethanol concentration, [EtOH], on the main phase transition temperature, T(m), and the phase structure of the lipid bilayer composed of C(X):C(Y)PC using differential scanning calorimetry and X-ray diffraction techniques [Huang and McIntosh, Biophys. J. 72 (1997) 2702--2709]. In the present work, we have extended these studies to characterize the effect of [EtOH] on the T(m) and the phase structure of the lipid bilayer composed of sn-1 saturated/sn-2 monounsaturated phosphatidylcholines with various positions of the cis double bond. Specifically, five positional isomers of 1-eicosanoyl-2-eicosenoyl-sn-glycero-3-phosphocholines, C(20):C(20:1 Delta(n))PC with n=5, 8, 11, 13 and 17, were synthesized and studied. For C(20):C(20:1 Delta(n))PC with n=5 and 8, results from the calorimetric experiments showed that in response to various concentrations of ethanol, the change in T(m) of the lipid bilayer composed of monounsaturated lipids was characterized by a sigmoidal or biphasic profile in the plot of T(m) versus [EtOH]. In contrast, a continuous depression of the T(m) by ethanol was observed calorimetrically for C(20):C(20:1 Delta(n))PC with n> or =11. The X-ray diffraction experiments further demonstrated that C(20):C(20:1 Delta(5))PC and C(20):C(20:1 Delta(8))PC can undergo the ethanol-induced gel-to-fully interdigitated phase transition at T相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号