首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of the DNA polymerase alpha core enzyme from mouse cells   总被引:2,自引:0,他引:2  
DNA polymerase alpha has been purified from mouse hybridoma cells approximately 30,000-fold using a combination of conventional and high performance liquid chromatography. In contrast to previous characterizations of mammalian DNA polymerase alpha, this enzyme has a single high molecular mass polypeptide (185 kDa) in tight association with a 68-kDa polypeptide and this structure appears to be the core DNA polymerase of the mouse cells. The biochemically purified enzyme, with a specific activity of approximately 200,000 units/mg protein, has an estimated molecular mass by gel filtration chromatography of 240 kDa and sedimentation value of 9 S, consistent with the enzyme being a heterodimer of 185 and 68 kDa. The enzyme is sensitive to both N-ethylmaleimide and aphidicolin and insensitive to ddTTP. Using an activated DNA template, the apparent Km values for the deoxynucleotide triphosphates are approximately 0.5-1 microM. The purified DNA polymerase has neither exonuclease nor primase activities and is the predominant DNA polymerase alpha activity in the mouse cells.  相似文献   

2.
Steady-state kinetic studies of DNA polymerase alpha purified from mouse myeloma MOPC104E cells have been carried out. The results of initial velocity analysis with or without sodium pyrophosphate, a product inhibitor, indicated that the reaction mechanism of this enzyme can be categorized as an ordered Bi Bi type where the concentration of the ternary complex is very low.  相似文献   

3.
Two forms of DNA polymerase alpha, alpha 1 and alpha 2, have been partially purified from mouse FM3A cells by discriminating one form from the other on the basis of the association of primase activity. The primase activity in the most purified alpha 1 fraction co-sedimented with the DNA polymerase activity in a glycerol gradient, and almost no primase activity was detected in the most purified alpha 2 fraction. The primase activity associated with DNA polymerase alpha was assayed indirectly by measuring ATP-dependent DNA synthesis with poly (dT) as template. Characterization of the assay system was performed with the purified alpha 1. The system was absolutely dependent on the presence of ATP and a divalent cation. Mn2+ was much more effective than Mg2+, and 5-fold higher activity was observed with Mn2+ than with Mg2+ at their optimal concentrations. The primase activity assayed by the above system showed sensitivity to (NH4)2SO4 very similar to that of free primase reported by Tseng and Ahlem (J. Biol. Chem. 258, 9845-9849, 1983). The activity was inhibited by more than 50% by 20 mM (NH4)2SO4. alpha 1 and alpha 2 were very similar as DNA polymerases in their sensitivity to several inhibitors and their preference for template-primers, except that alpha 1 had a slightly greater preference for poly (dT) X (rA)10 than alpha 2 did. The major difference between the two forms was observed in their S values, 8.2 and 6.4 S for alpha 1 and alpha 2, respectively.  相似文献   

4.
Mammalian DNA polymerase delta (Pol delta) is believed to replicate a large portion of the genome and to synthesize DNA in DNA repair and genetic recombination pathways. The effects of mutation in the polymerase domain of this essential enzyme are unknown. Here, we generated mice harboring an L604G or L604K substitution in highly conserved motif A in the polymerase active site of Pol delta. Homozygous Pold1(L604G/L604G) and Pold1(L604K/L604K) mice died in utero. However, heterozygous animals were viable and displayed no overall increase in disease incidence, indicative of efficient compensation for the defective mutant polymerase. The life spans of wild-type and heterozygous Pold1(+/L604G) mice did not differ, while that of Pold1(+/L604K) mice was reduced by 18%. Cultured embryonic fibroblasts from the heterozygous strains exhibited comparable increases in both spontaneous mutation rate and chromosome aberrations. We observed no significant increase in cancer incidence; however, Pold1(+/L604K) mice bearing histologically diagnosed tumors died at a younger median age than wild-type mice. Our results indicate that heterozygous mutation at L604 in the polymerase active site of DNA polymerase delta reduces life span, increases genomic instability, and accelerates tumorigenesis in an allele-specific manner, novel findings that have implications for human cancer.  相似文献   

5.
6.
7.
Induction of DNA polymerase in mouse L cells   总被引:36,自引:0,他引:36  
Two molecular species of DNA polymerase are found in mouse L cells. This study is concerned with the variation of these two species of enzyme with the rate of cell growth and DNA synthesis. The 3.4 S DNA polymerase, found in both nuclear and cytoplasmic fractions of mouse L cells, remains relatively constant during different stages of the growth curve. The heterogeneous 6 to 8 S DNA polymerase, found only in the cytoplasmic fractions, varies about 5 to 12-fold in correlation with DNA synthesis, as measured by [3H]thymidine incorporation.  相似文献   

8.
Different populations of DNA polymerase alpha in HeLa cells   总被引:3,自引:0,他引:3  
Three different populations of HeLa DNA polymerase alpha have been distinguished using a novel preparation of chromatin isolated using an isotonic salt concentration, which contains intact DNA. One synthesizes DNA in vitro at 85% of the rate in vivo, is found only in S-phase nuclei tightly associated with the nucleoskeleton and requires unbroken DNA in the form of chromatin as a template: we assume this is the authentic S-phase activity. On incubation at 37 degrees C, this activity dissociates from the nucleoskeleton to give a soluble activity that prefers broken templates. This soluble activity is in turn heterogeneous, containing active complexes of about 0 X 75 X 10(6) and 3 X 10(6) Mr. The third activity is also soluble and released by lysing cells at any stage of the cell cycle. It, too, prefers broken templates. The authentic activity is obscured by the soluble ones if broken templates are provided.  相似文献   

9.
tsFT20 cells derived from mouse FM3A cells are DNA temperature-sensitive mutants, which have heat-labile DNA polymerase alpha activity. When tsFT20 cells were incubated at restrictive temperatures, intracellular levels of DNA polymerase alpha activity changed biphasically, showing an initial fast decrease (phase I) and a subsequent slow decrease (phase II). The activity of DNA polymerase alpha from tsFT20 cells cultured at a permissive temperature (33 degrees C) was greatly increased by the addition of glycerol or ethylene glycol to the reaction mixture, while little increase in enzyme activity was observed at any concentration of glycerol or ethylene glycol tested with the enzyme from the cells cultured at a restrictive temperature (39 degrees C) for 8 h (phase II). The activity of DNA polymerase alpha from wild-type cells was also increased by the addition of glycerol but the increase was much less than that in the tsFT20 cells. An in vitro preincubation experiment showed that DNA polymerase alpha from tsFT20 cells cultured at 33 degrees C very rapidly lost its ability to be stimulated by glycerol. Furthermore, the experiment using the extracts prepared from tsFT20 cells cultured at 39 degrees C for various periods showed that the ability to be stimulated by glycerol decreased with the duration of incubation time at 39 degrees C. DNA polymerase alpha from the revertants, which can grow at 39 degrees C and exhibit a partial recovery in heat stability of DNA polymerase alpha activity, showed an intermediate response to glycerol, between those of DNA polymerase alpha from tsFT20 and from the wild-type cells. Finally, it was observed that the level of enzyme activity that can be stimulated by glycerol correlated well with the DNA synthesizing ability of tsFT20 cells.  相似文献   

10.
DNA polymerases delta and alpha were purified from CV-1 cells, and their sensitivities to the inhibitors aphidicolin, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), and monoclonal antibodies directed against DNA polymerase alpha were determined. The effects of these inhibitors on DNA replication in permeabilized CV-1 cells were studied to investigate the potential roles of polymerases delta and alpha in DNA replication. Aphidicolin was shown to be a more potent inhibitor of DNA replication than of DNA polymerase alpha or delta activity. Inhibition of DNA replication by various concentrations of BuPdGTP was intermediate between inhibition of purified polymerase alpha or delta activity. Concentrations of BuPdGTP which totally abolished DNA polymerase alpha activity were much less effective in reducing DNA replication, as well as the activity of DNA polymerase delta. Monoclonal antibodies which specifically inhibited polymerase alpha activity reduced, but did not abolish, DNA replication in permeable cells. BuPdGTP, as well as anti-polymerase alpha antibodies, inhibited DNA replication in a nonlinear manner as a function of time. Depending upon the initial or final rates of inhibition of replication by BuPdGTP and anti-alpha antibodies, as little as 50%, or as much as 80%, of the replication activity can be attributed to polymerase alpha. The remaining replication activity (20-50%) is tentatively attributed to polymerase delta, because it was aphidicolin sensitive and resistant to both anti-polymerase alpha antibodies and low concentrations of BuPdGTP. A concentration of BuPdGTP which abolished polymerase alpha activity reduced, but did not abolish, both the synthesis and maturation of nascent DNA fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Telomeres are essential for protecting the ends of chromosomes and preventing chromosome fusion. Telomere loss has been proposed to play an important role in the chromosomal rearrangements associated with tumorigenesis. To determine the relationship between telomere loss and chromosome instability in mammalian cells, we investigated the events resulting from the introduction of a double-strand break near a telomere with I-SceI endonuclease in mouse embryonic stem cells. The inactivation of a selectable marker gene adjacent to a telomere as a result of the I-SceI-induced double-strand break involved either the addition of a telomere at the site of the break or the formation of inverted repeats and large tandem duplications on the end of the chromosome. Nucleotide sequence analysis demonstrated large deletions and little or no complementarity at the recombination sites involved in the formation of the inverted repeats. The formation of inverted repeats was followed by a period of chromosome instability, characterized by amplification of the subtelomeric region, translocation of chromosomal fragments onto the end of the chromosome, and the formation of dicentric chromosomes. Despite this heterogeneity, the rearranged chromosomes eventually acquired telomeres and were stable in most of the cells in the population at the time of analysis. Our observations are consistent with a model in which broken chromosomes that do not regain a telomere undergo sister chromatid fusion involving nonhomologous end joining. Sister chromatid fusion is followed by chromosome instability resulting from breakage-fusion-bridge cycles involving the sister chromatids and rearrangements with other chromosomes. This process results in highly rearranged chromosomes that eventually become stable through the addition of a telomere onto the broken end. We have observed similar events after spontaneous telomere loss in a human tumor cell line, suggesting that chromosome instability resulting from telomere loss plays a role in chromosomal rearrangements associated with tumor cell progression.  相似文献   

13.
An indirect immunofluorescent test based on globulin preparation from a highly specific antiserum against rat liver DNA polymerase alpha was used to direct the enzyme in sections of various tissues of the rat. The immunofluorescent staining was found in cells of the thymus and the wall of intestine crypt, in sparse cells of the intestinal muscular layer, and in cells of the embryo skin epithelium. In sections of liver the intensity of staining and the number of stained cells increased significantly during regeneration. The immunoglobulins did not interact with the cytoplasm and nuclei of skeletal muscle myotubes, with the epithelial cells at the top of intestinal villi, and with erythrocytes. The intracellular localization of the fluorescence observed was of two general types: 1) staining in the region of the nuclear envelope and/or in the cytoplasm; 2) an additional intranuclear staining. The staining of the first type is characteristic of the cells of intact liver and of leyomyocytes. It was also observed in the proliferating cells of thymus and crypt wall, and in cultured myogenic L6 cells. Cells of the embryo skin epithelium, the satellite cells in the skeletal muscle, and about one half of the regenerating liver cells appeared to have the second type of staining. These data serve an indication of possible histotypical differences in in the intracellular localization of DNA polymerase alpha in proliferating cells. It is proposed that the presence of DNA polymerase in resting cells is in association with their ability to respond to the mitogenic stimulus.  相似文献   

14.
A simple method was developed for the isolation of primase-free DNA polymerase-alpha from the DNA polymerase-alpha-primase complex of mouse FM3A cells. The polymerase was separated from primase subunits by chromatography on a single-stranded DNA-cellulose column in the presence of 50% etylene glycol. The primase-free DNA polymerase-alpha contained two polypeptides with molecular masses of 180,000 and 68,000. Analysis of the DNA products with poly(dA)-oligo(dT)10 as template-primer revealed that both primase-free DNA polymerase-alpha and the DNA polymerase-alpha-primase complex predominantly synthesized short DNA with less than 30 nucleotides, but that the DNA polymerase-alpha-primase complex also synthesized some longer DNA with more than 300-400 nucleotides.  相似文献   

15.
The nucleotide excision repair pathway contributes to genetic stability by removing a wide range of DNA damage through an error-free reaction. When the lesion is located, the altered strand is incised on both sides of the lesion and a damaged oligonucleotide excised. A repair patch is then synthesized and the repaired strand is ligated. It is assumed that only DNA polymerases delta and/or epsilon participate to the repair DNA synthesis step. Using UV and cisplatin-modified DNA templates, we measured in vitro that extracts from cells overexpressing the error-prone DNA polymerase beta exhibited a five- to sixfold increase of the ultimate DNA synthesis activity compared with control extracts and demonstrated the specific involvement of Pol beta in this step. By using a 28 nt gapped, double-stranded DNA substrate mimicking the product of the incision step, we showed that Pol beta is able to catalyze strand displacement downstream of the gap. We discuss these data within the scope of a hypothesis previously presented proposing that excess error-prone Pol beta in cancer cells could perturb the well-defined specific functions of DNA polymerases during error-free DNA transactions.  相似文献   

16.
A protein factor which stimulates DNA polymerase alpha activity on heat-denatured DNA has been purified from mouse FM3A cells. The final preparation had a specific activity of 43,000 units/mg protein and lacked detectable DNA polymerase, RNA polymerase, DNA-dependent- and independent ATPase, exo- and endodeoxyribonuclease and phosphatase activities. The stimulating factor sedimented at 2.9S in a glycerol gradient. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the glycerol gradient fraction revealed the presence of a major band of 36,000 daltons, the amount of which corresponded well with the level of stimulating activity. The stimulation by the factor was specific for heat-denatured DNA, and a little or no stimulation was observed with native DNA, ribo- and deoxyribohomopolymers and single stranded circular DNA. Alkaline sucrose gradient sedimentation analysis of the reaction products revealed that newly synthesized DNA was covalently linked to the termini of heat-denatured DNA. The average chain length of the elongated span determined by the digestion with micrococcal nuclease and phosphodiesterase II, did not differ between in the presence and absence of the stimulating factor, suggesting that the stimulation by the factor was due to the increase in the initiation frequency of DNA synthesis from the 3'-hydroxyl terminus of heat-denatured DNA.  相似文献   

17.
Defects in the human gene XPV result in the variant form of the genetic disease xeroderma pigmentosum (XP-V). XPV encodes DNA polymerase η, a novel DNA polymerase that belongs to the UmuC/DinB/Rad30 superfamily. This polymerase catalyzes the efficient and accurate translesion synthesis of DNA past cis-syn cyclobutane di-thymine lesions. In this report we present the cDNA sequence and expression profiles of the mouse XPV gene and demonstrate its ability to complement defective DNA synthesis in XP-V cells. The mouse XPV protein shares 80.3% amino acid identity and 86.9% similarity with the human XPV protein. The recombinant mouse XPV protein corrected the inability of XP-V cell extracts to carry out DNA replication, by bypassing thymine dimers on template DNA. Transfection of the mouse or human XPV cDNA into human XP-V cells corrected UV sensitivity. Northern blot analysis revealed that the mouse XPV gene is expressed ubiquitously, but at a higher level in testis, liver, skin and thymus compared to other tissues. Although the mouse XPV gene was not induced by UV irradiation, its expression was elevated ~4-fold during cell proliferation. These results suggest that DNA polymerase η plays a role in DNA replication, though the enzyme is not essential for viability.  相似文献   

18.
U L?nn  S L?nn 《Radiation research》1985,102(1):71-75
X irradiation of cells induces damage in the DNA, which can be detected as fragmentation of the DNA in alkali. To examine whether DNA polymerase alpha plays a role in the X-ray-induced fragmentation of the DNA, cells with and without functioning DNA polymerase alpha have been compared. We have used the drug aphidicolin, which is a specific inhibitor of polymerase alpha. The results show that DNA of aphidicolin-treated cells is more easily fragmented in alkali than DNA of untreated cells. This is paralleled by a lower repair replication in cells without functioning DNA polymerase alpha. Hence polymerase alpha is involved in the repair process of lesions induced by X irradiation.  相似文献   

19.
The regulation of DNA polymerase alpha was examined in quiescent, human fibroblast cells stimulated to re-enter the cell cycle by subculturing in fresh serum-containing medium. The level of DNA polymerase alpha activity was measured in cell lysates and after specific immunoprecipitation. DNA polymerase alpha activity increased approximately 10-fold during the period of measurement. The activity increase was coincident with an approximately 60-fold increase in thymidine incorporation in the whole cells representing the first S phase. The large increase in polymerase alpha activity was not predominantly the result of synthesis of new polymerase, since the abundance of the enzyme changed less than 2-fold over the measured period. The quantity of [32P]phosphate incorporated into two subunits (180 and 68 kilodaltons) of DNA polymerase alpha increased approximately 10-fold in parallel with the increase in polymerase activity. The specific activity of the cellular ATP pool remained nearly constant over the period of measurement, indicating that the increase in labeling reflects a true increase in incorporation of phosphate. Results from other laboratories indicate that phosphorylation of DNA polymerase alpha increases its catalytic activity. Our results then suggest that the activity increase observed in DNA polymerase alpha when quiescent, human fibroblasts are stimulated to proliferate is largely caused by a phosphorylation-dependent regulatory process.  相似文献   

20.
Replication of simian virus 40 (SV40) chromatin in vitro is inhibited by chloride but stimulated by acetate anions even at physiological concentrations of 100-200 mM. In a similar fashion DNA polymerase alpha is affected with respect to the activity with activated DNA as primer template. Furthermore, at concentrations of 100-200 mM acetate DNA polymerase alpha remains associated with replicating chromatin, whereas association is strongly reduced when chloride anions are used at the corresponding concentrations. Thus the salt behaviour of DNA polymerase alpha explains the salt sensitivity of the replication system. Our results confirm the importance of this enzyme for DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号