首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? Premise of the study: One potential threat to rare species is genetic swamping caused by hybridization, but few studies have quantified this threat. Rhododendron cyanocarpum is a narrow endemic species that occurs sympatrically with potentially interfertile congeners throughout its range within Yunnan, China. We searched the entire distribution of R. cyanocarpum for hybrids and examined the patterns of hybridization to assess potential threat from hybridization. ? Methods: In a comprehensive field survey, we detected only one instance of hybridization involving R. cyanocarpum, with R. delavayi, at Huadianba near Dali. Material of both species and putative hybrids was examined using morphology, chloroplast DNA, nuclear ribosomal DNA, and Bayesian analysis of AFLP profiles. ? Key results: Of 10 putative hybrids, two were F(1)(')s and at least seven were F(2)(')s. Four backcrosses to R. delavayi were detected among material with R. delavayi-like morphology within the hybrid zone. Backcrosses to R. cyanocarpum were not detected. Therefore F(2)(')s outnumbered all other classes within the hybrid zone, a situation not previously confirmed for plants and extremely rare generally. Hybridization was asymmetrical, with R. delavayi as the maternal parent in all but one of the hybrids detected. ? Conclusions: Although natural hybridization is common in Rhododendron, it is rare in R. cyanocarpum and is apparently not accompanied by backcrossing toward R. cyanocarpum. Hence, there is no immediate risk of genetic swamping, unless habitat disturbance increases and changes the patterns of hybridization. Our study is the first to report a plant hybrid zone dominated by F(2) hybrids. This pattern might contribute to species barrier maintenance.  相似文献   

2.
Rhododendron (Ericaceae) is a large woody genus in which hybridization may play an important role in evolution and speciation, particularly in the Sino-Himalayan region, where many interfertile species often occur sympatrically. Natural hybridization between Rhododendron delavayi Franch. (=  R. arboreum ssp. delavayi ) and Rhododendron decorum Franch., which belong to different subsections of subgenus Hymenanthes, was investigated. Material of R. delavayi and R. decorum and their putative hybrids was collected from the wild. On the basis of morphology, chloroplast DNA, nuclear ribosomal DNA, and AFLP profiles, hybrids and parental species were identified. Hybridization occurred in both directions, but was asymmetrical, with R. delavayi as the major maternal parent in the hybrid zone. Most of the hybrids possessed intermediate phenotypes, and amongst the 15 hybrids detected were six F1s, two F2s, one first-generation backcross to R. delavayi , and two first-generation backcrosses to R. decorum . This indicates that, if Rhododendron underwent rapid radiation in this region, it did so in spite of permeable species barriers.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 119–129.  相似文献   

3.
The natural hybridization that occurs between two sympatric species of Rhododendron subgenus Hymenanthes in Yunnan, China, was investigated. The assumed parents, Rhododendron delavayi Franch. and R. decorum Franch., are morphologically distinct, and the putative hybrid species, R. agastum Balf. f. et W. W. Smith, has an intermediate morphology. We used the main morphological characters, sequences of the nuclear ribosomal DNA ITS region, and the chloroplast DNA trnL-F intronspacer to analyze the three species, and compared these morphological and molecular data with an artificial hybrid between R. decorum (♀) × R. delavayi (♂). From the results, we conclude that R. agastum is a natural hybrid between a female R. delavayi and a male R. decorum.  相似文献   

4.
探讨种间传粉在杜鹃花属自然杂交物种形成中的作用   总被引:4,自引:0,他引:4  
自然杂交是物种形成的一个途径, 在植物进化中起着重要的作用。自然杂交主要通过种间的基因交流, 花粉传递则是基因交流的主要途径。马缨花(Rhododendron delavayi)、大白花杜鹃(R. decorum)、迷人杜鹃(R. agastum)和露珠杜鹃(R. irroratum)是在云南广泛分布的杜鹃花种类, 马缨花与大白花杜鹃形态上区别明显, 而它们的可能杂交种迷人杜鹃和露珠杜鹃在形态上基本介于二者之间。本文对这4种杜鹃花的开花物候和访花昆虫的种类进行了观察,并进行了其繁育系统和种子萌发的实验。我们发现马缨花的花期从3月初至5月底, 迷人杜鹃与露珠杜鹃花期基本一致, 为3月初至4月初, 二者同大白花杜鹃基本不存在花期重叠, 大白花杜鹃的花期为4月中旬至5月底。4种杜鹃花的开花期不同年份稍有变化, 其单花开花周期都在一周以上。4种杜鹃花的传粉昆虫虽然种类和数量上有所不同, 但都以膜翅目和双翅目昆虫为主, 中华蜜蜂(Apis cerana cerana)是其共有的传粉昆虫。繁育系统研究发现, 除露珠杜鹃外, 其余3种自花不育, 而种间杂交不存在任何生殖障碍, 可以产生萌发率很高的种子。通过分析4种杜鹃花开花物候重叠、共有传粉昆虫及种间杂交可育等现象, 探讨了传粉昆虫和异花授粉的机制在自然杂交物种形成中的作用及杂交种的适应能力。  相似文献   

5.
Natural hybridization was assumed to play an essential role for the diversification of Primula; however, only one study of hybridization in the region of the Himalayas has been undertaken. In the present study, we examined another natural hybrid zone where morphologically putative hybrids as well as P. beesiana Forrest, P. bulleyana Forrest, and P. poissonii Franch. co-occurred. We used molecular data to confirm the parental species of putative hybrids and the unidirectional hybridization pattern between P. beesiana and P. bulleyana. Moreover, with reference to synthetic F1s, most hybrids examined are possibly advanced generations, although the possibility of F1 hybrids currently examined could not be completely excluded. In addition, pollinator observations on experimental arrays of transplanted parental species showed interspecific pollen flows during visitations of shared pollinators, indicating an incomplete pre-zygotic barrier between P. beesiana and P. bulleyana. Seed productions from both flower morphs of putative hybrids were significantly lower than parental species, suggesting lower reproductive success in these hybrids. Combined with the evidence of recent habitat disturbance in the study area, we might witness the early process of hybridization between P. beesianaand P. bulleyana.  相似文献   

6.
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre-and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species,R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation.All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators;reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.  相似文献   

7.
Hybridization in flowering plants is determined in part by the rate at which animal pollinators move between species and by the effectiveness of such movements in transferring pollen. Pollinator behavior can also influence hybrid fitness by determining receipt and export of pollen. We incorporated information on pollinator effectiveness and visitation behavior into a simulation model that predicts pollen transfer between Ipomopsis aggregata, Ipomopsis tenuituba, and hybrids. These predictions were compared with estimates of pollen transfer derived from movement of fluorescent dyes in experimental plant arrays. Interspecific pollen transfer was relatively uncommon in these arrays, whereas transfer between hybrids and the parental species was at least as common as conspecific transfer. Backcrossing was asymmetrical; I. aggregata flowers frequently received mixed loads of hybrid and conspecific pollen. The simulation suggests that these patterns of pollen transfer are largely explained by the visitation sequences of hummingbird and insect pollinators, with little contribution from mechanical isolation. Pollen receipt by hybrids exceeded that of both parental species in a year when pollinators preferred to visit F(1) and F(2) hybrids and was intermediate in another year when they preferred to visit I. aggregata. This suggests that natural variation in pollination may produce spatiotemporal variation in hybridization and hybrid fitness.  相似文献   

8.
Models of hybrid zones differ in their assumptions about the relative fitnesses of hybrids and the parental species. These fitness relationships determine the form of selection across the hybrid zone and, along with gene flow, the evolutionary dynamics and eventual outcome of natural hybridization. We measured a component of fitness, export and receipt of pollen in single pollinator visits, for hybrids between the herbaceous plants Ipomopsis aggregata and I. tenuituba and for both parental species. In aviary experiments with captive hummingbirds, hybrid flowers outperformed flowers of both parental species by receiving more pollen on the stigma. Although hummingbirds were more effective at removing pollen from anthers of I. aggregata, hybrid flowers matched both parental species in the amount of pollen exported to stigmas of other flowers. These patterns of pollen transfer led to phenotypic stabilizing selection, during that stage of the life cycle, for a stigma position intermediate between that of the two species and to directional selection for exserted anthers. Pollen transfer between the species was high, with flowers of I. aggregata exporting pollen equally successfully to conspecific and I. tenuituba flowers. Although this study showed that natural hybrids enjoy the highest quality of pollinator visits, a previous study found that I. aggregata receives the highest quantity of pollinator visits. Thus, the relative fitness of hybrids changes over the life cycle. By combining the results of both studies, pollinator-mediated selection in this hybrid zone is predicted to be strong and directional, with hybrid fitness intermediate between that of the parental species.  相似文献   

9.
Natural hybridization is very common in plants, and plays an important role in plant evolution. Besides the traditional methods including morphological analysis and hand crossing, molecular evidence is needed for studying natural hybridization.In order to analyze natural hybridization in Roscoea,HAT-RAPD technique was used toidentify putative hybrids from parental species by principal co ordinate analysis and hybrid index. The results indicated that the bands amplified by HAT-RAPD technique were more stable and reliable than that of RAPD. The result of principal co ordinate analysis and hybrid index showed that intermediate individuals were the hybrids of R.humeana and R.cautleoides, and showed closer relationships to R.humeana. These results suggested that HAT-RAPD could be used to study natural hybridization. As it is simple and easy to manipulate, HAT RAPD may prove to be a very effective technique in hybrid identification in the studies of plant evolution.  相似文献   

10.
Morphologically intermediate plants between Weigela hortensis (Siebold & Zucc.) K.Koch and W. maximowiczii (S.Moore) Rehder have been found in Miyagi and Yamagata Pref., northern Japan. Quantitative character analyses of flowers, pollen stainability and molecular analyses indicated that the intermediate plants were hybrids of those two species. This is the first record of an intersectional hybrid with W. maximowiczii (sect. Weigelastrum ) as one of the parent species. The morphological differences among hybrid individuals imply the possibility of backcrosses or formation of second or later generations of hybrids, although those may be quite rare because of a low frequency of viable pollen grains. Causes of hybridization between two distantly-related species in Weigela are discussed. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 369–380.  相似文献   

11.
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.  相似文献   

12.
Hybrid bridges to gene flow: a case study in milkweeds (Asclepias)   总被引:1,自引:0,他引:1  
Natural hybridization occurs throughout areas of sympatry for the North American milkweeds Asclepias exaltata and A. syriaca (Asclepiadaceae), even though the formation of F1 hybrid seed is a rare event. For introgressive hybridization to proceed, F1 and advanced hybrids must be released from reproductive barriers and successfully mate with one or both parental species. I investigated the mating system of natural hybrids between A. exaltata and A. syriaca in three populations in Shenandoah National Park, Virginia. Allozyme data and a maximum-likelihood procedure were used to estimate the frequency of six genotypic classes (parentals, F1, F2, and backcrosses) of the hybridizing populations, the pollinia received by hybrid plants, and the paternal parents of seeds produced by hybrids. F1 hybrids, backcross A. syriaca, and parental A. syriaca individuals were common in three hybrid populations. Even though self-pollinations and interhybrid pollinations were common, F2 seed production and the occurrence of F2 individuals were rare in hybrid populations. Hybrid plants received more pollen from A. syriaca than A. exaltata, which resulted in the production of more backcross-A. syriaca seed than backcross-A. exaltata seed. Asclepias exaltata was rare in the hybrid populations, but A. exaltata pollinia were received by hybrids and this species sired between 15% and 36% of the seeds produced on hybrids. The potential for introgression with A. exaltata populations is lower because this species is unsuccessful as the maternal parent in interspecific and backcross hand-pollinations. The asymetry of hybridization with A. syriaca as the maternal parent is further supported by the incorporation of maternally inherited chloroplast DNA markers in hybrids. Hybrid milkweeds frequently backcross with both parental species and may be released from the reproductive barriers that limit the formation of F1 hybrids in natural populations. The direction of interspecific gene flow and introgression in milkweeds is influenced by the reproductive biology of hybrids, the constituency of the surrounding population, and failure of some crosses to produce seeds. Finally, introgressive hybridization remains an important evolutionary force even when the initial formation of F1 hybrids in natural populations is rare.  相似文献   

13.
Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious.  相似文献   

14.
The river floodplain species Rorippa amphibia, Rorippa sylvestris, and their hybrid Rorippa x anceps were studied here, with the aim of identifying potential species differences with respect to flooding tolerance, and of assessing their expression in F1 hybrids. Parents and their F1 hybrids were subjected to three flooding treatments mimicking natural conditions, and growth-related and leaf morphological traits were compared. In contrast to R. sylvestris, R. amphibia responded to waterlogging by forming specialized roots, and its growth was not reduced. These traits were dominantly expressed in hybrids. Both species and the hybrids established shoot growth over 2 wk of complete submergence. Only in R. sylvestris was this not at the expense of root biomass, suggesting that R. sylvestris can photosynthesize underwater. Rorippa sylvestris also showed a hyponastic response. Hybrids were intermediate to the parents in this respect. This study shows that phenotypic expression of parental traits in F1 hybrids is mostly additive, but can also be dominant. This suggests that a large overlap in habitat use of parents and hybrids is likely. If such an overlap occurs, the main evolutionary consequences of hybridization in Rorippa will be the introgression of genes, as the hybrids are fully fertile.  相似文献   

15.
In their classic study, Alston and Turner (American Journal of Botany, vol. 50, 159-173, 1963) documented extensive hybridization among four morphologically distinct Baptisia species native to East Texas. While Alston and Turner found putative F1 hybrids in great numbers, they found no evidence of backcrossing. In this study prezygotic and postzygotic reproductive barriers between two of these species, B. leucophaea and B. sphaerocarpa, were investigated and found to be quite weak. Flowering times overlap and bumble bees were observed visiting both species and intermediate hybrids. While pollinator constancy in flights between B. leucophaea and B. sphaerocarpa was moderately strong, significant levels of constancy were not observed in flights involving hybrids and either parental species. Thus, backcrossing was not impeded by pollinator behavior. Further, hybrid pollen was highly stainable (93.5%) and able to effectively set seed in crossing experiments with both parental species. Pollinator behavior was compared in experimental populations with and without hybrid ramets and found to differ between these two treatments. Hybrids were found to facilitate pollinator movement between species. In total, these results suggest that reproductive isolation is not responsible for the rarity of backcrossing in naturally hybridizing B. leucophaea and B. sphaerocarpa populations.  相似文献   

16.
Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss-specific nuclear markers, 11 O. c. clarki-specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes.  相似文献   

17.
Rhododendron (Ericaceae) is a large genus in which barriers to hybridization are especially weak, but many species are maintained in sympatry. Hybridization among four species of Rhododendron subsect. Pontica, which occur in sympatry in Turkey, was investigated. Material of R. ponticum, R. smirnovii, R. ungernii, and R. caucasicum and their putative hybrids was collected from the wild. Based on morphology, chloroplast DNA and nuclear ribosomal DNA restriction fragment length polymorphism (RFLP) profiles, each accession was identified as a species or hybrid combination. Five of the six possible hybrid combinations among the four species were detected. Rhododendron ponticum × R. smirnovii was represented by a single individual and R. caucasicum × R. smirnovii by one small group of hybrid plants. The combinations R. ponticum × R. ungernii and R. ungernii × R. smirnovii showed evidence of frequent backcrossing, while R. ponticum × R. caucasicum appeared unusual in that an intermediate hybrid type was abundant, whereas hybrids with phenotypes approaching either parent were rare. Possible explanations of this latter situation are discussed. The results suggest that natural hybridization among Rhododendron species is common and that ecological factors are important in maintaining integrity when species occur in sympatry.  相似文献   

18.
While hybridization has been reported for a large number of primate taxa, there is a general lack of data on hybrid morphology for wild individuals with known genetic ancestry. A confirmed hybrid zone for the closely related Neotropical primates Alouatta palliata and A. pigra has provided a unique opportunity to study primate hybrid morphological variation. Here we used molecular evidence based on mitochondrial, Y‐chromosome, and autosomal data to assess hybrid ancestry. We conducted univariate and multivariate statistical comparisons of morphometric data collected from individuals both outside and within the hybrid zone in Tabasco, Mexico. Our results show that of all the hybrids detected (N = 128), only 12% of them were approximately genetically intermediate, and none of them were first generation hybrids. Univariate pairwise comparisons among parental individuals, multigenerational backcrossed hybrids, and intermediate hybrids showed that overall, multigenerational backcrossed hybrids resemble the parental species with which they share most of their alleles. Conversely, intermediates were highly variable. Similarly, principal component analysis depicts an overlap between the parental species and their backcrosses when considering overall morphological differences. Finally, discriminant function analysis of the morphological variables was overall unreliable for classifying individuals into their assigned genotypic classes. Taken together, our results suggest that primate natural hybridization studies should incorporate molecular methods for determining ancestry, because morphology may not always be a reliable indicator of hybrid status. Hybrid zones could comprise a large number of multigenerational backcrossed hybrids that are indistinguishable from the parental species. The implications for studying hybridization in the primate fossil record are discussed. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Reciprocal hybrid formation of Spartina in San Francisco Bay   总被引:6,自引:0,他引:6  
Diversity in the tRNALEU1 intron of the chloroplast genome of Spartina was used to study hybridization of native California cordgrass, Spartina foliosa, with S. alterniflora, introduced to San Francisco Bay approximately 25 years ago. We sequenced 544 bases of the tRNALEU1 intron and found three polymorphic sites, a pyrimidine transition at site 126 and transversions at sites 382 and 430. Spartina from outside of San Francisco Bay, where hybridization between these species is impossible, gave cpDNA genotypes of the parental species. S. foliosa had a single chloroplast haplotype, CCT, and this was unique to California cordgrass. S. alterniflora from the native range along the Atlantic coast of North America had three chloroplast haplotypes, CAT, TAA, and TAT. Hybrids were discriminated by random amplified polymorphic DNA (RAPD) phenotypes developed in a previous study. We found one hybrid that contained a cpDNA haplotype unknown in either parental species (TCT). The most significant finding was that hybridization proceeds in both directions, assuming maternal inheritance of cpDNA; 26 of the 36 hybrid Spartina plants from San Francisco Bay contained the S. foliosa haplotype, nine contained haplotypes of the invading S. alterniflora, and one had the cpDNA of unknown origin. Furthermore, cpDNA of both parental species was distributed throughout the broad range of RAPD phenotypes, suggesting ongoing contributions to the hybrid swarm from both. The preponderance of S. foliosa cpDNA has entered the hybrid swarm indirectly, we propose, from F1s that backcross to S. foliosa. Flowering of the native precedes by several weeks that of the invading species, with little overlap between the two. Thus, F1 hybrids would be rare and sired by the last S. foliosa pollen upon the first S. alterniflora stigmas. The native species produces little pollen and this has low viability. An intermediate flowering time of hybrids as well as pollen that is more vigourous and abundant than that of the native species would predispose F1s to high fitness in a vast sea of native ovules. Thus, spread of hybrids to other S. foliosa marshes could be an even greater threat to the native species than introductions of alien S. alterniflora.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号