共查询到20条相似文献,搜索用时 12 毫秒
1.
Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. 总被引:4,自引:9,他引:4 下载免费PDF全文
With the aid of three monoclonal antibodies (MAbs), a glycoprotein specifically localized to the outer envelope of vaccinia virus was shown to be encoded by the A33R gene. These MAbs reacted with a glycosylated protein that migrated as 23- to 28-kDa and 55-kDa species under reducing and nonreducing conditions, respectively. The protein recognized by the three MAbs was synthesized by all 11 orthopoxviruses tested: eight strains of vaccinia virus (including modified vaccinia virus Ankara) and one strain each of cowpox, rabbitpox, and ectromelia viruses. The observation that the protein synthesized by ectromelia virus-infected cells reacted with only one of the three MAbs provided a means of mapping the gene encoding the glycoprotein. By transfecting vaccinia virus DNA into cells infected with ectromelia virus and assaying for MAb reactivity, we mapped the glycoprotein to the A33R open reading frame. The amino acid sequence and hydrophilicity plot predicted that the A33R gene product is a type II membrane protein with two asparagine-linked glycosylation sites. Triton X-114 partitioning experiments indicated that the A33R gene product is an integral membrane protein. The ectromelia virus homolog of the vaccinia virus A33R gene was sequenced, revealing 90% predicted amino acid identity. The vaccinia and variola virus homolog sequences predict 94% identical amino acids, the latter having one fewer internal amino acid. Electron microscopy revealed that the A33R gene product is expressed on the surface of extracellular enveloped virions but not on the intracellular mature form of virus. The conservation of this protein and its specific incorporation into viral envelopes suggest that it is important for virus dissemination. 相似文献
2.
Mutations in the vaccinia virus A33R and B5R envelope proteins that enhance release of extracellular virions and eliminate formation of actin-containing microvilli without preventing tyrosine phosphorylation of the A36R protein 下载免费PDF全文
The spread of vaccinia virus in cell cultures is mediated by virions that adhere to the tips of specialized actin-containing microvilli and also by virions that are released into the medium. The use of a small plaque-forming A36R gene deletion mutant to select spontaneous second-site mutants exhibiting enhanced virus release was described previously. Two types of mutations were found: C-terminal truncations of the A33R envelope protein and a single amino acid substitution of the B5R envelope protein. In the present study, we transferred each type of mutation into a wild-type virus background in order to study their effects in vitro and in vivo. The two new mutants conserved the enhanced virus release properties of the original isolates; the A33R mutant produced considerably more extracellular virus than the B5R mutant. The extracellular virus particles contained the truncated A33R protein in one case and the mutated B5R protein in the other. Remarkably, both mutants failed to form actin tails and specialized microvilli, despite the presence of an intact A36R gene. The synthesis of the A36R protein as well as its physical association with the mutated or wild-type A33R protein was demonstrated. Moreover, the A36R protein was tyrosine phosphorylated, a step mediated by a membrane-associated Src kinase that regulates the nucleation of actin polymerization. The presence of large numbers of adherent virions on the cell surface argued against rapid dissociation as having a key role in preventing actin tail formation. Thus, the A33R and B5R proteins may be more directly involved in the formation or stabilization of actin tails than had been previously thought. When mice were inoculated intranasally, the A33R mutant was highly attenuated and the B5R mutant was mildly attenuated compared to wild-type virus. Enhanced virus release, therefore, did not compensate for the loss of actin tails and specialized microvilli. 相似文献
3.
The extracellular form of vaccinia virus acquires its outer envelope by wrapping with cytoplasmic membranes that contain at least seven virus-encoded proteins, of which four are glycoproteins. We searched for interactions between the vaccinia virus A33 glycoprotein and proteins A34, A36, B5, F12, and F13. First, when myc epitope-tagged A33 was expressed in combination with other envelope proteins, A33 colocalized with B5 and A36, suggesting that direct A33-B5 and A33-A36 interactions occur in the absence of infection. A recombinant vaccinia virus (vA33Rmyc) was constructed by introduction of the myc-tagged A33 version (A33myc) into A33-deficient vaccinia virus. A33myc partially restored plaque formation and colocalized with enveloped virions in infected cells. Coimmunoprecipitation experiments with extracts of vA33Rmyc-infected cells confirmed the existence of a physical association of A33 with A36 and B5. Of these, the A33-B5 interaction is a novel finding, whereas the interaction between A33 and A36 has been previously characterized. A collection of vaccinia viruses expressing mutated versions of the B5 protein was used to investigate the domain(s) of B5 required for interaction with A33. Both the cytoplasmic domain and most of the extracellular domain, but not the transmembrane domain, of the B5 protein were dispensable for binding to A33. Mutations in the extracellular portions of B5 and A33 that enhance extracellular virus release did not affect the interaction between the two. In contrast, substituting the B5 transmembrane domain with that of the vesicular stomatitis virus G glycoprotein prevented the association with A33. Immunofluorescence experiments on virus mutants indicated that B5 is required for efficient targeting of A33 into enveloped virions. These results point to the transmembrane domain of B5 as the major determinant of the A33-B5 interaction and demonstrate that protein-protein interactions are crucial in determining the composition of the virus envelope. 相似文献
4.
The cytoplasmic and transmembrane domains of the vaccinia virus B5R protein target a chimeric human immunodeficiency virus type 1 glycoprotein to the outer envelope of nascent vaccinia virions. 总被引:1,自引:3,他引:1 下载免费PDF全文
The outer envelope of the extracellular form of vaccinia virus (EEV) is derived from the Golgi membrane and contains at least six viral proteins. Transfection studies indicated that the EEV protein encoded by the B5R gene associates with Golgi membranes when synthesized in the absence of other viral products. A domain swapping strategy was then used to investigate the possibility that the B5R protein contains an EEV targeting signal. We constructed chimeric genes encoding the human immunodeficiency virus (HIV) type 1 glycoprotein with the cytoplasmic and transmembrane domains replaced by the corresponding 42-amino-acid C-terminal segment of the B5R protein. Recombinant vaccinia viruses that stably express a chimeric B5R-HIV protein or a control HIV envelope protein with the original cytoplasmic and transmembrane domains were isolated. Cells infected with recombinant vaccinia viruses that expressed either the unmodified or the chimeric HIV envelope protein formed syncytia with cells expressing the CD4 receptor for HIV. However, biochemical and microscopic studies demonstrated that the HIV envelope proteins with the B5R cytoplasmic and transmembrane domains were preferentially targeted to the EEV. These data are consistent with the presence of EEV localization signals in the cytoplasmic and transmembrane domains of the B5R protein. 相似文献
5.
The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein 下载免费PDF全文
The products of the A33R and A36R genes of vaccinia virus are incorporated into the membranes of intracellular enveloped virions (IEV). When extracts of cells that had been infected with vaccinia virus and labeled with H(3)(32)PO(4) were immunoprecipitated with antibodies against the A33R protein, two prominent bands were resolved. The moderately and more intensely labeled bands were identified as phosphorylated A33R and A36R proteins, respectively. The immunoprecipitated complex contained disulfide-bonded dimers of A33R protein that were noncovalently linked to A36R protein. Biochemical analysis indicated that the two proteins were phosphorylated predominantly on serine residues, with lesser amounts on threonines. The A36R protein was also phosphorylated on tyrosine, as determined by specific binding to an anti-phosphotyrosine antibody. Serine phosphorylation and A33R-A36R protein complex formation occurred even when virus assembly was blocked at an early stage with the drug rifampin. Tyrosine phosphorylation was selectively reduced in cells infected with F13L or A34R gene deletion mutants that were impaired in the membrane-wrapping step of IEV formation. In addition, tyrosine phosphorylation was specifically inhibited in cells infected with an A33R deletion mutant that still formed IEV. Immunofluorescence and immunoelectron microscopy indicated that in the absence of the A33R protein, the A36R protein was localized in Golgi membranes but not in IEV. In the absence of the A36R protein, however, the A33R protein still localized to IEV membranes. These studies together with others suggest that the A33R protein guides the A36R protein to the IEV membrane, where it subsequently becomes tyrosine phosphorylated as a signal for actin tail formation. 相似文献
6.
Identification of functional domains within the essential large tegument protein pUL36 of pseudorabies virus 总被引:2,自引:0,他引:2 下载免费PDF全文
Böttcher S Granzow H Maresch C Möhl B Klupp BG Mettenleiter TC 《Journal of virology》2007,81(24):13403-13411
Proteins of the capsid proximal tegument are involved in the transport of incoming capsids to the nucleus and secondary envelopment after nuclear egress. Homologs of the essential large capsid proximal tegument protein pUL36 are conserved within the Herpesviridae. They interact with another tegument component, pUL37, and contain a deubiquitinating activity in their N termini which, however, is not essential for virus replication. Whereas an internal deletion of 709 amino acids (aa) within the C-terminal half of the alphaherpesvirus pseudorabies virus (PrV) pUL36 does not impair its function (S. Böttcher, B. G. Klupp, H. Granzow, W. Fuchs, K. Michael, and T. C. Mettenleiter, J. Virol. 80:9910-9915, 2006), deletion of the very C terminus does (J. Lee, G. Luxton, and G. A. Smith, J. Virol. 80:12086-12094, 2006). For further characterization we deleted several predicted functional and structural motifs within PrV pUL36 and analyzed the resulting phenotypes in cell culture and a mouse infection model. Extension of the internal deletion to encompass aa 2087 to 2981 exerted only minor effects on virus replication but resulted in prolonged mean survival times of infected mice. Any additional extension did not yield viable virus. Deletion of an N-terminal region containing the deubiquitinating activity (aa 22 to 248) only slightly impaired viral replication in cell culture but slowed neuroinvasion in our mouse model, whereas a strong impairment of viral replication was observed after simultaneous removal of both nonessential domains. Absence of a region containing two predicted leucine zipper motifs (aa 748 to 991) also strongly impaired virus replication and spread. Thus, we identify several domains within the PrV UL36 protein, which, though not essential, are nevertheless important for virus replication. 相似文献
7.
Two mechanisms exist for the incorporation of B5 into extracellular virions, one of which is dependent on A33. In the companion to this paper (W. M. Chan and B. M. Ward, J. Virol. 86:8210-8220, 2012), we show that the lumenal domain of A33 is sufficient for interaction with the coiled-coil domain of B5 and capable of directing B5-green fluorescent protein (GFP) into extracellular virions. Here, we have created a panel of charge-to-alanine mutations in the lumenal domain of A33 to map the B5 interaction site. While none of these mutations abolished the interaction with B5, a subset displayed an increased interaction with both B5 and B5-GFP. Both B5 and B5-GFP recombinant viruses expressing these mutant proteins in place of normal A33 had a small-plaque phenotype. The increased interaction of the mutant proteins was detected during infection, suggesting that normally the interaction is either weak or transient. In addition, the increased A33-B5 interaction was detected on virions produced by recombinant viruses and correlated with reduced target cell binding. Taken together, these results show that both B5 and B5-GFP interact with A33 during infection and that the duration of this interaction needs to be regulated for the production of fully infectious extracellular virions. 相似文献
8.
Mapping of multiple phosphorylation sites within the structural and catalytic domains of the Fujinami avian sarcoma virus transforming protein. 总被引:11,自引:7,他引:11 下载免费PDF全文
The phosphorylation sites of the P140gag-fps gene product of Fujinami avian sarcoma virus have been identified and localized to different regions of this transforming protein. FSV P140gag-fps isolated from transformed cells is phosphorylated on at least three distinct tyrosine residues and one serine residue, in addition to minor phosphorylation sites shared with Pr76gag. Partial proteolysis with virion protease p15 or with Staphylococcus aureus V8 protease has been used to generate defined peptide fragments of P140gag-fps and thus to map its phosphorylation sites. The amino-terminal gag-encoded region of P140gag-fps contains a phosphotyrosine residue in addition to normal gag phosphorylation sites. The two major phosphotyrosine residues and the major phosphorserine residue are located in the carboxy-terminal portion of the fps-encoded region of P140gag-fps. P140gag-fps radiolabeled in vitro in an immune complex kinase reaction is phosphorylated at only one of the two C-terminal tyrosine residues phosphorylated in vivo and weakly phosphorylated at the gag-encoded tyrosine and at a tyrosine site not detectably phosphorylated in vivo. Thus, the in vitro tyrosine phosphorylation of P140gag-fps is distinct from that seen in the transformed cell. A comparative tryptic phosphopeptide analysis of the gag-fps proteins of three Fujinami avian sarcoma virus variants showed that the phosphotyrosine-containing peptides are invariant, and this high degree of sequence conservation suggests that these sites are functionally important or lie within important regions. The P105gag-fps transforming protein of PRCII avian sarcoma virus lacks one of the C-terminal phosphotyrosine sites found in Fujinami avian sarcoma virus P140gag-fps. Partial trypsin cleavage of FSV P140gag-fps immunoprecipitated with anti-gag serum releases C-terminal fragments of 45K and 29K from the immune complex that retain an associated tyrosine-specific protein kinase activity. This observation, and the localization of the major P140gag-fps phosphorylation sites to the C-terminal fps region, indicate that the kinase domain of P140gag-fps is located at its C terminus. The phosphorylation of P140gag-fps itself is complex, suggesting that it may itself interact with several protein kinases in the transformed cell. 相似文献
9.
Quantitative analysis of the interaction between the envelope protein domains and the core protein of human hepatitis B virus 总被引:3,自引:0,他引:3
Choi KJ Lim CW Yoon MY Ahn BY Yu YG 《Biochemical and biophysical research communications》2004,319(3):959-966
Interaction between preformed nucleocapsids and viral envelope proteins is critical for the assembly of virus particles in infected cells. The pre-S1 and pre-S2 and cytosolic regions of the human hepatitis B virus envelope protein had been implicated in the interaction with the core protein of nucleocapsids. The binding affinities of specific subdomains of the envelope protein to the core protein were quantitatively measured by both ELISA and BIAcore assay. While a marginal binding was detected with the pre-S1 or pre-S2, the core protein showed high affinities to pre-S with apparent dissociation constants (K(D)(app)) of 7.3+/-0.9 and 8.2+/-0.4microM by ELISA and BIAcore assay, respectively. The circular dichroism analysis suggested that conformational change occurs in pre-S through interaction with core protein. These results substantiate the importance of specific envelope domains in virion assembly, and demonstrate that the interaction between viral proteins can be quantitatively measured in vitro. 相似文献
10.
11.
Mapping of receptor binding domains in the envelope protein of spleen necrosis virus. 总被引:1,自引:2,他引:1 下载免费PDF全文
Spleen necrosis virus (SNV) is an amphotropic retrovirus originally isolated from a duck. Although of avian origin, it also replicates on some mammalian cells. SNV-derived retroviral vectors work with high efficiency and have a high potential for various gene transfer applications. However, little is known about the envelope-receptor interactions of this virus. We constructed a series of recombinant envelope proteins to characterize the SU peptide of SNV. We found that, in contrast to the envelope proteins of other retroviruses, truncated envelope proteins of SNV are transported to the cell surface. Surprisingly, particles displaying truncated envelope proteins can still infect cells, although at reduced efficiencies. Furthermore, these proteins can confer partial superinfection interference. Our data suggest that peptides throughout SU are involved in envelope-receptor interactions. To more precisely determine the localization of the main receptor binding domain, point mutations were introduced at certain regions of the SNV SU which are highly conserved among retroviruses belonging to the same receptor interference group. We identified one point mutation in the middle of SU (position 192) which drastically reduced infectivity and strongly reduced the ability to confer superinfection interference. The level of expression was not abolished, and translocation to the cell membrane of the mutant envelope occurred efficiently. This indicates that amino acid 192 may be directly involved in receptor binding. 相似文献
12.
Mapping of functional domains within the Saccharomyces cerevisiae type 1 killer preprotoxin. 总被引:3,自引:0,他引:3 下载免费PDF全文
Strains of Saccharomyces cerevisiae harboring M1-dsRNA, the determinant of type 1 killer and immunity phenotypes, secrete a dimeric 19-kd toxin that kills sensitive yeast cells by the production of cation-permeable pores in the cytoplasmic membrane. The preprotoxin, an intracellular precursor to toxin, has the domain sequence delta-alpha-gamma-beta where alpha and beta are the 9.5-and 9.0-kd subunits of secreted toxin. Plasmids containing a partial cDNA copy of M1, in which alpha, gamma, and beta are fused to the PH05 promoter and signal peptide, have previously been shown to express phosphate-repressible toxin production and immunity. Here the construction of a complete DNA copy of the preprotoxin gene and its mutagenesis are described. Analysis of the expression of these mutants from the PH05 promoter elucidates the functions of the preprotoxin domains. delta acts as a leader peptide and efficiently mediates the secretion, glycosylation and maturation of killer toxin. Mutations within the beta subunit indicate it to be essential for binding of toxin to and killing of whole cells but unnecessary for the killing of spheroplasts. Mutations within the putative active site of alpha prevent killing of both cells and spheroplasts. The probable role of beta is therefore recognition and binding to the cell wall receptor whereas alpha is the active ionophore. Mutations within alpha causing loss of toxicity also cause loss of immunity, while the mutants described within gamma and beta retain partial or complete immunity. Expression of gamma without alpha or beta confers no phenotype. The immunity determinant may minimally consist of the alpha domain and the N-terminal portion of gamma.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Amino acids do not occur randomly in proteins; rather, their occurrence at any given site is strongly influenced by the amino acid composition at other sites, the structural and functional aspects of the region of the protein in which they occur, and the evolutionary history of the protein. The goal of our research study is to identify networks of coevolving sites within the serpin proteins (serine protease inhibitors) and classify them as being caused by structural-functional constraints or by evolutionary history. To address this, a matrix of pairwise normalized mutual information (NMI) values was computed among amino acid sites for the serpin proteins. The NMI matrix was partitioned into orthogonal patterns of amino acid variability by factor analysis. Each common factor pattern was interpreted as having phylogenetic and/or structural-functional explanations. In addition, we used a bootstrap factor analysis technique to limit the effects of phylogenetic history on our factor patterns. Our results show an extensive network of correlations among amino acid sites in key functional regions (reactive center loop, shutter, and breach). Additionally, we have discovered long-range coevolution for packed amino acids within the serpin protein core. Lastly, we have discovered a group of serpin sites which coevolve in the hydrophobic core region (s5B and s4B) and appear to represent sites important for formation of the "native" instead of the "latent" serpin structure. This research provides a better understanding on how protein structure evolves; in particular, it elucidates the selective forces creating coevolution among protein sites. 相似文献
14.
Intracellular localization of vaccinia virus extracellular enveloped virus envelope proteins individually expressed using a Semliki Forest virus replicon 下载免费PDF全文
The extracellular enveloped virus (EEV) form of vaccinia virus is bound by an envelope which is acquired by wrapping of intracellular virus particles with cytoplasmic vesicles containing trans-Golgi network markers. Six virus-encoded proteins have been reported as components of the EEV envelope. Of these, four proteins (A33R, A34R, A56R, and B5R) are glycoproteins, one (A36R) is a nonglycosylated transmembrane protein, and one (F13L) is a palmitylated peripheral membrane protein. During infection, these proteins localize to the Golgi complex, where they are incorporated into infectious virus that is then transported and released into the extracellular medium. We have investigated the fates of these proteins after expressing them individually in the absence of vaccinia infection, using a Semliki Forest virus expression system. Significant amounts of proteins A33R and A56R efficiently reached the cell surface, suggesting that they do not contain retention signals for intracellular compartments. In contrast, proteins A34R and F13L were retained intracellularly but showed distributions different from that of the normal infection. Protein A36R was partially retained intracellularly, decorating both the Golgi complex and structures associated with actin fibers. A36R was also transported to the plasma membrane, where it accumulated at the tips of cell projections. Protein B5R was efficiently targeted to the Golgi region. A green fluorescent protein fusion with the last 42 C-terminal amino acids of B5R was sufficient to target the chimeric protein to the Golgi region. However, B5R-deficient vaccinia virus showed a normal localization pattern for other EEV envelope proteins. These results point to the transmembrane or cytosolic domain of B5R protein as one, but not the only, determinant of the retention of EEV proteins in the wrapping compartment. 相似文献
15.
Functional domains within the human immunodeficiency virus type 2 envelope protein required to enhance virus production 下载免费PDF全文
Primate lentiviruses code for a protein that stimulates virus production. In human immunodeficiency virus type 1 (HIV-1), the activity is provided by the accessory protein, Vpu, while in HIV-2 and simian immunodeficiency virus it is a property of the envelope (Env) glycoprotein. Using a group of diverse retroviruses and cell types, we have confirmed the functional equivalence of the two proteins. However, despite these similarities, the two proteins have markedly different functional domains. While the Vpu activity is associated primarily with its membrane-spanning region, we have determined that the HIV-2 Env activity requires both the cytoplasmic tail and ectodomain of the protein, with the membrane-spanning domain being less important. Within the Env cytoplasmic tail, we further defined the necessary sequence as a membrane-proximal tyrosine-based motif. Providing the two Env regions separately as distinct CD8 chimeric proteins did not increase virus release. This suggests that the two domains must be either contained within a single protein or closely associated within a multiprotein oligomer, such as the Env trimer, in order to function. Finally, we observed that wild-type levels of incorporation of the HIV-2 Env into budding viruses were not required for this activity. 相似文献
16.
Structural and functional properties of the 14-kDa envelope protein of vaccinia virus synthesized in Escherichia coli 总被引:5,自引:0,他引:5
Vaccinia virus is a highly cytocidal virus, but the steps that lead to virus penetration into cells, the first event in virus pathogenesis, have not been elucidated. We have shown that a 14-kDa envelope protein of vaccinia virus might play a major role in virus-penetration acting at the level of cell fusion (Rodriguez, J. F., Paez, E., and Esteban, M. (1987) J. Virol. 61, 395-404; Gong, S., Lai, C., and Esteban, M. (1990) Virology 178, 81-91). To carry out structural and functional studies on the vaccinia 14-kDa protein, it would be desirable to have a high level expression system, since the amount of protein that can be obtained from purified virus or from infected cells is very limited. In this investigation we demonstrate that the 14-kDa envelope protein of vaccinia virus is expressed in Escherichia coli in soluble form and at high levels. We establish, by several criteria, that the 14-kDa vaccinia virus protein expressed in E. coli is similar to the protein found in the virus particle based on apparent molecular mass, occurrence of disulfide-linked oligomers, reactivity against specific monoclonal antibody, and identity in amino-terminal sequence with the predicted DNA sequence of the gene. We define several structural and functional properties concerning the 14-kDa envelope protein of vaccinia virus. 1) 14 kDa is a trimer of identical subunits. 2) A monomer binds to itself more strongly than to a dimer or a trimer. 3) Oligomerization does not require cellular factors. 4) Trimers induce high titer neutralizing antibodies in animals which correlate with overall immunogenicity. 5) 14-kDa binds with specificity to the cell surface of cultured cells. 相似文献
17.
18.
Mapping of interaction domains between human repair proteins ERCC1 and XPF. 总被引:4,自引:1,他引:4 下载免费PDF全文
W L de Laat A M Sijbers H Odijk N G Jaspers J H Hoeijmakers 《Nucleic acids research》1998,26(18):4146-4152
ERCC1-XPF is a heterodimeric protein complexinvolved in nucleotide excision repair and recombinational processes. Like its homologous complex in Saccharomyces cerevisiae , Rad10-Rad1, it acts as a structure-specific DNA endonuclease, cleaving at duplex-single-stranded DNA junctions. In repair, ERCC1-XPF and Rad10-Rad1 make an incision on the the 5'-side of the lesion. No humans with a defect in the ERCC1 subunit of this protein complex have been identified and ERCC1-deficient mice suffer from severe developmental problems and signs of premature aging on top of a repair-deficient phenotype. Xeroderma pigmentosum group F patients carry mutations in the XPF subunit and generally show the clinical symptoms of mild DNA repair deficiency. All XP-F patients examined demonstrate reduced levels of XPF and ERCC1 protein, suggesting that proper complex formation is required for stability of the two proteins. To better understand the molecular and clinical consequences of mutations in the ERCC1-XPF complex, we decided to map the interaction domains between the two subunits. The XPF-binding domain comprises C-terminal residues 224-297 of ERCC1. Intriguingly, this domain resides outside the region of homology with its yeast Rad10 counterpart. The ERCC1-binding domain in XPF maps to C-terminal residues 814-905. ERCC1-XPF complex formation is established by a direct interaction between these two binding domains. A mutation from an XP-F patient that alters the ERCC1-binding domain in XPF indeed affects complex formation with ERCC1. 相似文献
19.
Identification and mapping of functional domains on human T-cell lymphotropic virus type 1 envelope proteins by using synthetic peptides. 下载免费PDF全文
To identify the regions that are important in human T-cell leukemia virus type 1 (HTLV-1) envelope function, we synthesized 23 kinds of peptides covering the envelope proteins and examined the inhibitory effect of each peptide on syncytium formation induced by HTLV-1-bearing cells. Of the 23 synthetic peptides, 2, corresponding to amino acids 197 to 216 on gp46 and 400 to 429 on gp21, inhibited syncytium formation induced by HTLV-1-bearing cells but did not affect syncytium formation induced by human immunodeficiency virus type 1-producing cells. The peptide concentrations giving 50% inhibition of syncytium formation for gp46 197 to 216 and gp21 400 to 429 were 14.9 and 6.0 microM, respectively. A syncytium formation assay with overlapping synthetic peptides containing amino acids 175 to 236 and 391 to 448 of the envelope proteins showed that syncytium formation was inhibited by peptides that contained the amino acid sequences 197 to 205 (Asp-His-Ile-Leu-Glu-Pro-Ser-Ile-Pro) and 397 to 406 (Gln-Glu-Gln-Cys-Arg-Phe- Pro-Asn-Ile-Thr). These observations suggest that the two regions corresponding to amino acids 197 to 216 and 400 to 429 are involved] in HTLV-1 envelope function. 相似文献
20.
The envelope protein encoded by the vaccinia virus A17L open reading frame is essential for virion assembly. Our mutagenesis studies indicated that cysteines 101 and 121 form an intramolecular disulfide bond and that cysteine 178 forms an intermolecular disulfide linking two A17L molecules. This arrangement of disulfide bonds has important implications for the topology of the A17L protein and supports a two-transmembrane model in which cysteines 101 and 121 are intraluminal and cysteine 178 is cytoplasmic. The structure of the A17L protein, however, was not dependent on these disulfide bonds, as a recombinant vaccinia virus with all three cysteine codons mutated to serines retained infectivity. 相似文献