首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
Angiotensin-converting enzyme (ACE), an enzyme that plays a major role in vasoactive peptide metabolism, is a type 1 ectoprotein, which is released from the plasma membrane by a proteolytic cleavage occurring in the stalk sequence adjacent to the membrane anchor. In this study, we have discovered the molecular mechanism underlying the marked increase of plasma ACE levels observed in three unrelated individuals. We have identified a Pro(1199) --> Leu mutation in the juxtamembrane stalk region. In vitro analysis revealed that the shedding of [Leu(1199)]ACE was enhanced compared with wild-type ACE. The solubilization process of [Leu(1199)]ACE was stimulated by phorbol esters and inhibited by compound 3, an inhibitor of ACE-secretase. The results of Western blot analysis were consistent with a cleavage at the major described site (Arg(1203)/Ser(1204)). Two-dimensional structural analysis of ACE showed that the mutated residue was critical for the positioning of a specific loop containing the cleavage site. We therefore propose that a local conformational modification caused by the Pro(1199) --> Leu mutation leads to more accessibility at the stalk region for ACE secretase and is responsible for the enhancement of the cleavage-secretion process. Our results show that different molecular mechanisms are responsible for the common genetic variation of plasma ACE and for its more rare familial elevation.  相似文献   

2.
Chattopadhyay S  Karan G  Sen I  Sen GC 《Biochemistry》2008,47(32):8335-8341
Both germinal and somatic isoforms of ACE are type I ectoproteins expressed on the cell surface from where the enzymatically active ectodomains are released to circulation by a regulated cleavage-secretion process. Our previous studies have shown that ACE-secretase activity is regulated by the ACE distal ectodomain and not by sequences at or around the cleavage site. In the current study we have identified that the ACE residues encompassing 343 to 655 of the germinal form are needed for its cleavage-secretion. To narrow down this region further, we have examined the cleavage-secretion of ACE-CD4 chimeric proteins in mammalian cells and Pichia pastoris. These experiments identified five residues (HGEKL) in the ACE region of the chimeric proteins that were essential for their cleavage-secretion. When the corresponding residues were substituted by alanine in native germinal and somatic ACE, the mutant proteins were not cleaved, although they were displayed on the cell surface and enzymatically active. These results demonstrated that a small region in the ectodomain of ACE is required for its cleavage at the juxtamembrane domain. This conclusion was further supported by our observation that secreted ACE inhibited cell-bound ACE cleavage-secretion, although the secreted form did not contain the cleavage site.  相似文献   

3.
Fractalkine (FK, CX3CL1) is a novel multidomain protein expressed on the surface of endothelial cells. As a full-length transmembrane protein, FK binds cells expressing CX3CR1, its cognate receptor, with high affinity. Proteolytic cleavage of FK releases a soluble form that is a potent chemoattractant for monocytes, T cells, and natural killer cells. Activation of protein kinase C dramatically increases the rate of this cleavage. Regulation of FK cleavage is critical for maintaining the balance between the immobilized and soluble forms, but the protease responsible has not been identified. Here we report that tumor necrosis factor-alpha-converting enzyme (TACE) is primarily responsible for the inducible cleavage of FK. After transfection into host cells, the proteolytic cleavage of FK was blocked by TACE-specific inhibitors and was not detected in cells genetically altered to remove TACE activity. In contrast, the constitutive cleavage of FK was not mediated by TACE and proceeded normally in TACE-null fibroblasts. We conclude that TACE is primarily responsible for the inducible cleavage of FK. These studies identify a potentially important link between local generation of potent cytokines and control of the balance between the cell adhesion and chemotactic properties of FK.  相似文献   

4.
A variety of cell surface adhesion molecules can exist as both transmembrane proteins and soluble circulating forms. Increases in the levels of soluble adhesion molecules have been correlated with a variety of inflammatory diseases, suggesting a pathological role. Although soluble forms are thought to result from proteolytic cleavage from the cell surface, relatively little is known about the proteases responsible for their release. In this report we demonstrate that under normal culture conditions, cells expressing vascular cell adhesion molecule 1 (VCAM-1) release a soluble form of the extracellular domain that is generated by metalloproteinase-mediated cleavage. VCAM-1 release can be rapidly simulated by phorbol 12-myristate 13-acetate (PMA), and this induced VCAM-1 shedding is mediated by metalloproteinase cleavage of VCAM-1 near the transmembrane domain. PMA-induced VCAM-1 shedding occurs as the result of activation of a specific pathway, as the generation of soluble forms of three other adhesion molecules, E-selectin, platelet-endothelial cell adhesion molecule 1, and intercellular adhesion molecule 1, are not altered by PMA stimulation. Using cells derived from genetically deficient mice, we identify tumor necrosis factor-alpha-converting enzyme (TACE or ADAM 17) as the protease responsible for PMA-induced VCAM-1 release, including shedding of endogenously expressed VCAM-1 by murine endothelial cells. Therefore, TACE-mediated shedding of VCAM-1 may be important for the regulation of VCAM-1 function at the cell surface.  相似文献   

5.
Angiotensin-converting enzyme (ACE) and the Alzheimer's disease amyloid precursor protein are two examples of membrane-bound proteins that are released in a soluble form by a post-translational proteolytic cleavage event involving a secretase. Site-specific antibodies and matrix-assisted laser desorption ionization-time-of-flight ('MALDI-TOF') MS have been used to map the secretase cleavage site in somatic ACE to Arg-1203/Ser-1204, 24 residues proximal to the membrane-anchoring domain. Trypsin, which can solubilize ACE from the membrane, cleaves the protein at the same site. The use of structurally related hydroxamic acid-based zinc metalloproteinase inhibitors indicate that tumour necrosis factor-alpha convertase, a member of the ADAMs ('a disintegrin and metalloproteinase') family of proteins, is not involved in the proteolytic release of ACE, or in the constitutive or regulated alpha-secretase release of the amyloid precursor protein from a human neuronal cell line.  相似文献   

6.
Angiotensin-converting enzyme (ACE) is an example of a membrane-bound protein, which is shed from the cell surface in a soluble form by a post-translational proteolytic cleavage event involving a secretase. The secretase cleavage site in somatic ACE has been mapped to Arg-1203/Ser-1204, 24 residues proximal to the membrane-anchoring domain and the ADAM ('a disintegrin and metalloprotease') family of proteins may be involved in ACE shedding.  相似文献   

7.
Preadipocyte factor 1 (Pref-1), an epidermal growth factor repeat containing transmembrane protein found in the preadipocytes, inhibits adipocyte differentiation in vitro and in vivo. Here, we examined the processing of membrane form of Pref-1A to release the 50-kDa soluble form that inhibits adipocyte differentiation. The ectodomain cleavage of Pref-1 is markedly enhanced by phorbol 12-myristate 13-acetate in a dose- and time-dependent manner. The basal and stimulated cleavage is inhibited by the broad metalloproteinase inhibitor GM6001, a fact that suggests that cleavage of membrane Pref-1A is dependent on a metalloproteinase. Next, we showed that release of soluble Pref-1A is inhibited by TAPI-0 and by a tissue inhibitor of metalloproteinase-3, TIMP-3, that can inhibit tumor necrosis factor alpha converting enzyme (TACE), but not by TIMP-1 or TIMP-2. On the other hand, overexpression of TACE increases Pref-1 cleavage to produce the 50-kDa soluble form. Furthermore, this cleavage was not detected in cells with TACE mutation or with TACE small interfering RNA. TACE-mediated shedding of Pref-1 ectodomain inhibits adipocyte differentiation of 3T3-L1 cells and in Pref-1-null mouse embryo fibroblasts transduced with Pref-1A. Identification of TACE as the major protease responsible for conversion of membrane-bound Pref-1 to the biologically active diffusible form provides a new insight into Pref-1 function in adipocyte differentiation.  相似文献   

8.
The ectodomain of certain transmembrane proteins can be released by the action of cell surface proteases, termed secretases. Here we have investigated how mitogen-activated protein kinases (MAPKs) control the shedding of membrane proteins. We show that extracellular signal-regulated kinase (Erk) acts as an intermediate in protein kinase C-regulated TrkA cleavage. We report that the cytosolic tail of the tumor necrosis factor alpha-converting enzyme (TACE) is phosphorylated by Erk at threonine 735. In addition, we show that Erk and TACE associate. This association is favored by Erk activation and by the presence of threonine 735. In contrast to the Erk route, the p38 MAPK was able to stimulate TrkA cleavage in cells devoid of TACE activity, indicating that other proteases are also involved in TrkA shedding. These results demonstrate that secretases are able to discriminate between the different stimuli that trigger membrane protein ectodomain cleavage and indicate that phosphorylation by MAPKs may regulate the proteolytic function of membrane secretases.  相似文献   

9.
A functionally and structurally diverse group of transmembrane proteins including transmembrane forms of mediators or receptors can be proteolytically cleaved to form soluble growth factors or receptors. Recently, the proteolytic activity responsible for pro-tumor necrosis factor alpha (proTNFalpha) processing has been identified and named TACE (TNFalpha converting enzyme). In experiments with TACE deficient (TACE-/-) fibroblasts we found that 4beta-phorbol 12-myristate 13-acetate (PMA)-induced shedding of the interleukin-6 receptor (IL-6R) is strongly reduced. A basal hydroxamate sensitive release of IL-6R, however, could still be detected. This result demonstrates that TACE plays a role in IL-6R processing and that additional metalloproteases might be involved. PMA-induced shedding of IL-6R in TACE deficient mouse fibroblasts could be restored by stable transfection of a TACE cDNA. To characterize differences between shedding of IL-6R and proTNFalpha we generated chimeric IL-6R and proTNFalpha proteins wherein the endogenous cleavage sites (CS) had been replaced by the corresponding region of proTNFalpha and IL-6R, respectively. Interestingly, proTNFalpha chimeric proteins showed only minimal shedding. In contrast, IL-6R chimeras containing the proTNFalpha CS were shed spontaneously, processing was not further induced by PMA. Thus, the cleavage pattern transferred by the introduction of the proTNFalpha CS is similar to that of proTNFalpha itself. We conclude that the amino-acid sequence at the proteolytic CS contributes to the cleavage characteristics of a protein. However, this information alone is not sufficient to transfer cleavability as seen with proTNFalpha chimeras containing the IL-6R CS and which were resistant to shedding.  相似文献   

10.
Both germinal (gACE) and somatic (sACE) isozymes of angiotensin-converting enzyme (ACE) are type I ectoproteins whose enzymatically active ectodomains are cleaved and shed by a membrane-bound protease. Here, we report a role of protein tyrosine phosphorylation in regulating this process. Strong enhancements of ACE cleavage secretion was observed upon enhancing protein Tyr phosphorylation by treating gACE- or sACE-expressing cells with pervanadate, an inhibitor of protein Tyr phosphatases. Secreted gACE, cell-bound mature gACE and its precursors were all Tyr-phosphorylated, as was the endoplasmic reticulum protein, immunoglobulin heavy chain-binding protein, that co-immunoprecipitated with ACE. The enhancement of cleavage secretion by pervanadate did not require the presence of the cytoplasmic domain of ACE, and it was not accomplished by enhancing the rate of intracellular processing of the protein. The observed enhancement of cleavage secretion of ACE in pervanadate-treated cells was specifically blocked by an inhibitor of the p38 mitogen-activated protein (MAP) kinase but not by inhibitors of many other Ser/Thr and Tyr protein kinases, including a specific inhibitor of protein kinase C that, however, could block the enhancement of cleavage secretion elicited by phorbol ester. These results indicate that ACE Tyr phosphorylation, probably in the endoplasmic reticulum, enhances the rate of its cleavage secretion at the plasma membrane using a regulatory pathway that may involve p38 MAP kinase.  相似文献   

11.
We previously implicated tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) in the processing of the integral membrane precursor to soluble transforming growth factor-alpha (TGF-alpha), pro-TGF-alpha. Here we examined TGF-alpha processing in a physiologically relevant cell model, primary keratinocytes, showing that cells lacking TACE activity shed dramatically less TGF-alpha as compared with wild-type cultures and that TGF-alpha cleavage was partially restored by infection of TACE-deficient cells with TACE-encoding adenovirus. Moreover, cotransfection of TACE-deficient fibroblasts with pro-TGF-alpha and TACE cDNAs increased shedding of mature TGF-alpha with concomitant conversion of cell-associated pro-TGF-alpha to a processed form. Purified TACE accurately cleaved pro-TGF-alpha in vitro at the N-terminal site and also cleaved a soluble form of pro-TGF-alpha containing only the ectodomain at the C-terminal site. In vitro, TACE accurately cleaved peptides corresponding to cleavage sites of several epidermal growth factor (EGF) family members, and transfection of TACE into TACE-deficient cells increased the shedding of amphiregulin and heparin-binding EGF (HB-EGF) proteins. Consistent with the hypothesis that TACE regulates EGF receptor (EGFR) ligand availability in vivo, mice heterozygous for Tace and homozygous for an impaired EGFR allele (wa-2) were born with open eyes significantly more often than Tace(+/+)Egfr(wa-2)(/)(wa-2) counterparts. Collectively, these data support a broad role for TACE in the regulated shedding of EGFR ligands.  相似文献   

12.
Angiotensin converting enzyme-2 (ACE2) is a recently described membrane-bound carboxypeptidase identified by its homology to ACE, the enzyme responsible for the formation of the potent vasoconstrictor angiotensin II (Ang II). ACE2 inactivates Ang II and is thus thought to act in a counter-regulatory fashion to ACE. ACE2 is highly expressed in epithelial cells of distal renal tubules, and recent evidence indicates that expression is increased in a range of renal diseases. A soluble form of ACE, generated by proteolytic cleavage of the membrane-bound form, has been shown to be present in urine; although evidence for a similar release of ACE2 has been reported in cell culture, it is not yet known whether this occurs in vivo. The present study has identified ACE2 in human urine, both by a sensitive fluorescence-based activity assay and by Western immunoblot. Levels of ACE2 were surprisingly higher than ACE, which may reflect preferential targeting of the enzyme to the luminal surface of the renal epithelium. Future studies will determine whether increased expression of ACE2 in renal diseases are reflected in higher urinary levels of this novel enzyme.Australian Peptide Conference Issue.  相似文献   

13.
Summary The ADAMs (A Disintegrin And Metalloprotease-like) family is a large and rapidly expanding group of metallo-proteinases with structural similarity. The are normally characterized by the presence of a proteolytic domain and disintegrin and signalling domains. Although 21 ADAMs proteins have been already cloned to date, in most cases their natural substrates are unknown. The best characterized representative of the mammalian ADAMs family is the TNF-α converting enzyme (TACE). TACE is an integral membrane metalloproteinase that causes the secretion of the active form of TNF-α from its plasma membrane precursor and thus can be regarded as a membrane protein secretase. Secretion of membrane proteins is a very well documented biological phenomenon and was demonstrated for a diverse range of membrane proteins, two examples being angiotensin converting enzyme (ACE) and Alzheimer's amyloid precursor protein (APP). ACE and APP secretion was shown to possess substantial similarity with the secretion of TNF-α. In the present study, we have attempted to demonstrate that a metalloproteinase might be involved in the shedding of another membrane-bound protein—acetylcholinesterase (AChE). Secretion of AChE by human neuroblastoma SH-SY5Y cells was found to be inhibited by a selective hydroxamate metalloproteinase inhibitor batimastat (20 μM), and stimulated by carbachol (20 μM), which have previously been shown to regulate the activity of APP α-secretase in a similar manner. The role of ADAMs proteins in the shedding of molecules from the cell surface is discussed.  相似文献   

14.
Epidermal growth factor (EGF) family ligands are derived by proteolytic cleavage of the ectodomains of integral membrane precursors. Previously, we established that tumor necrosis factor alpha-converting enzyme (TACE/ADAM17) is a physiologic transforming growth factor-alpha (TGF-alpha) sheddase, and we also demonstrated enhanced shedding of amphiregulin (AR) and heparin-binding (HB)-EGF upon restoration of TACE activity in TACE-deficient EC-2 fibroblasts. Here we extended these results by showing that purified soluble TACE cleaved single sites in the juxtamembrane stalks of mouse pro-HB-EGF and pro-AR ectodomains in vitro. For pro-HB-EGF, this site matched the C terminus of the purified human growth factor, and we speculate that the AR cleavage site is also physiologically relevant. In contrast, ADAM9 and -10, both implicated in HB-EGF shedding, failed to cleave the ectodomain or cleaved at a nonphysiologic site, respectively. Cotransfection of TACE in EC-2 cells enhanced phorbol myristate acetate-induced but not constitutive shedding of epiregulin and had no effect on betacellulin (BTC) processing. Additionally, soluble TACE did not cleave the juxtamembrane stalks of either pro-BTC or pro-epiregulin ectodomains in vitro. Substitution of the shorter pro-BTC juxtamembrane stalk or truncation of the pro-TGF-alpha stalk to match the pro-BTC length reduced TGF-alpha shedding from transfected cells to background levels, whereas substitution of the pro-BTC P2-P2' sequence reduced TGF-alpha shedding less dramatically. Conversely, substitution of the pro-TGF-alpha stalk or lengthening of the pro-BTC stalk, especially when combined with substitution of the pro-TGF-alpha P2-P2' sequence, markedly increased BTC shedding. These results indicate that efficient TACE cleavage is determined by a combination of stalk length and scissile bond sequence.  相似文献   

15.
Ectodomain shedding of cell surface membrane-anchoring proteins is an important process in a wide variety of physiological events(1, 2). Tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE) is the first discovered mammalian sheddase responsible for cleavage of several important surface proteins, including TNF-alpha, TNF p75 receptor, L-selectin, and transforming growth factor-a. Phorbol myristate acetate (PMA) has long been known as a potent agent to enhance ectodomain shedding. However, it is not fully understood how PMA activates TACE and induces ectodomain shedding. Here, we demonstrate that PMA induces both reactive oxygen species (ROS) generation and TNF p75 receptor shedding in Mono Mac 6 cells, a human monocytic cell line, and l-selectin shedding in Jurkat T-cells. ROS scavengers significantly attenuated PMA-induced TNF p75 receptor shedding. Exogenous H2O2 mimicked PMA-induced enhancement of ectodomain shedding, and H2O2-induced shedding was blocked by TAPI, a TACE inhibitor. Furthermore, both PMA and H2O2 failed to cause ectodomain shedding in a cell line that lacks TACE activity. By use of an in vitro TACE cleavage assay, H2O2 activated TACE that had been rendered inactive by the addition of the TACE inhibitory pro-domain sequence. We presume that the mechanism of TACE activation by H2O2 is due to an oxidative attack of the pro-domain thiol group and disruption of its inhibitory coordination with the Zn++ in the catalytic domain of TACE. These results demonstrate that ROS production is involved in PMA-induced ectodomain shedding and implicate a role for ROS in other shedding processes.  相似文献   

16.
1. The two isozymes of human angiotensin converting enzyme (ACE; EC 3.4.15.1) have recently been cloned and sequenced. 2. The larger, endothelial isozyme has two highly similar internal domains each bearing a putative catalytic site. In contrast the smaller, testicular isozyme has a single catalytic site corresponding to the C-terminal domain of endothelial ACE and represents the ancestral, non-duplicated form of the gene. 3. Both isozymes are anchored in the plasma membrane by a single hydrophobic transmembrane polypeptide located near the C-terminus, and both are extensively N-glycosylated. 4. The testicular isozyme may also be O-glycosylated. 5. The soluble form of ACE in plasma, seminal fluid and other body fluids appears to be derived from the membrane-bound endothelial isozyme by a post-translational modification. 6. ACE has a complex substrate specificity with peptidyl tripeptidase or endopeptidase action on certain peptides, as well as the classical peptidyl dipeptidase activity. 7. Numerous potent inhibitors of the enzyme have been developed and used successfully in the treatment of hypertension, but some of the observed side effects may be due to inhibition of other zinc metalloenzymes. 8. Both endothelial and testicular ACE are highly conserved between species, indicative of the essential role(s) of the enzyme in blood pressure regulation and other physiological processes.  相似文献   

17.
This study shows that the high affinity alpha-chain of the interleukin (IL)-15 receptor exists not only in membrane-anchored but also in soluble form. Soluble IL-15Ralpha (sIL-15Ralpha) can be detected in mouse sera and cell-conditioned media by enzyme-linked immunosorbent assay and by immunoprecipitation and Western blotting. This protein has a molecular mass of about 30 kDa because of the presence of a single N-glycosylation site, which is reduced to 26 kDa after N-glycosidase treatment. Transmembrane IL-15Ralpha is constitutively converted into its soluble form by proteolytic cleavage that involves tumor necrosis factor-alpha-converting enzyme (TACE), and this process is further enhanced by phorbol 12-myristate 13-acetate (PMA) stimulation. The hydroxamate GW280264X, which is capable of blocking TACE and the closely related disintegrin-like metalloproteinase 10 (ADAM10), effectively inhibited both spontaneous and PMA-inducible cleavage of IL-15Ralpha, whereas GI254023X, which preferentially blocks ADAM10, was ineffective. Overexpression of TACE but not ADAM10 in COS-7 cells enhanced the constitutive and PMA-inducible cleavage of IL-15Ralpha. Moreover, murine fibroblasts deficient in TACE but not ADAM10 expression exhibited a significant reduction in the spontaneous and inducible IL-15Ralpha shedding, whereas a reconstitution of TACE in these cells restored the release of sIL-15Ralpha, thereby suggesting that TACE-mediated proteolysis may represent a major mechanism for sIL-15Ralpha generation in mice. The existence of natural sIL-15Ralpha offers novel insights into the complex biology of IL-15 and envisages a new level for therapeutic intervention.  相似文献   

18.
Proprotein convertases (PCs) have been proposed to play a role in tumor necrosis factor-alpha converting enzyme (TACE) processing/activation. Using the furin-deficient LoVo cells, as well as the furin-proficient synoviocytes and HT1080 cells expressing the furin inhibitor alpha(1)-PDX, we demonstrate that furin activity alone is not sufficient for effective maturation and activation of the TACE enzyme. Data from in vitro and in vivo cleavage assays indicate that PACE-4, PC5/PC6, PC1 and PC2 can directly cleave the TACE protein and/or peptide. PC inhibition in macrophages reduced the release of soluble TNF-alpha from transmembrane pro-TNF-alpha. We therefore conclude that furin, in addition to other candidate PCs, is involved in TACE maturation and activation.  相似文献   

19.
Upon stimulation by histamine, human vascular endothelial cells (EC) shed a soluble form of tumour necrosis factor receptor 1 (sTNFR1) that binds up free TNF, dampening the inflammatory response. Shedding occurs through proteolytic cleavage of plasma membrane-expressed TNFR1 catalysed by TNF-α converting enzyme (TACE). Surface expressed TNFR1 on EC is largely sequestered into specific plasma membrane microdomains, the lipid rafts/caveolae. The purpose of this study was to determine the role of these domains in TACE-mediated TNFR1 shedding in response to histamine. Human umbilical vein endothelial cells derived EA.hy926 cells respond to histamine via H1 receptors to shed TNFR1. Both depletion of cholesterol by methyl-β-cyclodextrin and small interfering RNA knockdown of the scaffolding protein caveolin-1 (cav-1), treatments that disrupt caveolae, reduce histamine-induced shedding of membrane-bound TNFR1. Moreover, immunoblotting of discontinuous sucrose gradient fractions show that TACE, such as TNFR1, is present within low-density membrane fractions, concentrated within caveolae, in unstimulated EA.hy926 endothelial cells and co-immunoprecipitates with cav-1. Silencing of cav-1 reduces the levels of both TACE and TNFR1 protein and displaces TACE, from low-density membrane fractions where TNFR1 remains. In summary, we show that endothelial lipid rafts/caveolae co-localize TACE to surface expressed TNFR1, promoting efficient shedding of sTNFR1 in response to histamine.  相似文献   

20.
Tumor necrosis factor-alpha (TNFalpha) is presumably shed from cell membranes by TNFalpha-cleaving enzyme (TACE). The peptides SPLAQAVRSSSR and Dabcyl-LAQAVRSSSR-Edans, each encompassing the cleavage sequence of pro-TNFalpha recognized by TACE, were applied to intact umbilical vein endothelium (HUVEC), peripheral blood leukocytes (PBL) and the mast cell line HMC-1, which express TACE, to homogenates of rat heart tissue and to membrane and cytoplasmic extracts of PBL. Formation of SPLAQA (specific cleavage) was determined by HPLC, while cleavage (specific plus non-specific) of Dabcyl-TNFalpha-Edans was followed over time by measuring fluorescence. Participation of TACE was assessed from inhibition due to the drug TAPI-2. Incubation with recombinant human TACE gave specific cleavage, fully inhibitable by TAPI-2 (IC50 < 0.1 microM). HUVEC rapidly degraded TNFalpha-peptide, but in a non-specific manner (no SPLAQA detectable) and 50 microM TAPI-2 was without effect. Fluorescence was evoked when Dabcyl-LAQAVRSSSR-Edans was incubated with HMC-1 or PBL and also with cytoplasmic and membrane fractions of lysed PBL, but in no case was there significant inhibition by TAPI-2. However, marginal (10%) inhibition of fluorescence by 50 microM TAPI-2 was observed with homogenized heart tissue. This contained TACE, about 75% of which was without the inhibitory cysteine switch (Western blot). In conclusion, simple peptide analogs of pro-TNFalpha cannot be employed as substrates for measuring membrane TACE activity, largely due to extensive non-specific proteolytic cleavage by whole cells and cell extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号