首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Microsomes prepared from guinea-pig and ox brain were incubated for periods of a few seconds with low concentrations of Mg-[(32)P]ATP, the reaction was stopped with trichloroacetic acid and determinations were made of the phosphate bound to the acid-washed, and in some cases solvent-extracted, residue. 2. At 20 mum-ATP, at 37 degrees and in the presence of Na(+) ions, 30-50 mumumoles of phosphate/mg. of microsomal protein were bound by the preparation within 1 sec. of starting the reaction; little further change in level occurred until hydrolysis of ATP exceeded 50%, when the bound phosphate began to decline fairly rapidly to the zero-time value. 3. At 20mum-ATP without Na(+) ions present or in the presence of K(+) ions, the level of bound phosphate increased gradually and did not decline as ATP hydrolysis approached completion. 4. Potassium ions either inhibited the formation of Na(+)-dependent bound phosphate or, when added during the course of the reaction, rapidly reduced its level. 5. At 200 mum-ATP the bound phosphate formed in the presence of Na(+) ions appeared to consist of a mixture of the unstable Na(+)-dependent type and the stable type requiring only Mg(2+) ions for its formation. 6. Non-radioactive ATP added during the course of the reaction at 20 mum-ATP with Na(+)ions present rapidly discharged virtually all the bound (32)P counts; at 200 mum-ATP only a proportion of the label was similarly discharged. The Na(+)-dependent bound phosphate is therefore turning over, in contrast with that formed in the absence of Na(+)ions, which proved more stable. 7. The Na(+)-dependent bound phosphate was not in the form of ATP; experiments with [(14)C]ATP instead of [(32)P]ATP showed a small and invariable binding of ATP by the preparation unaffected by Na(+) ions or time of incubation. 8. Under the usual conditions employed in this work ouabain stimulated formation of Na(+)-dependent bound phosphate when Na(+) ions were suboptimum and inhibited it when optimum Na(+) ions were present. 9. The Na(+)-dependent binding reaction under present conditions did not involve incorporation into phosphorylserine groups. 10. The relation of the findings to the (Na(+),K(+))-ATPase of the preparation, and to observations in brain slices appearing to implicate phosphorylserine groups in cation transport, is discussed.  相似文献   

2.
1. The intrinsic Na(+), K(+), Mg(2+) and Ca(2+) contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na(+) from 90+/-20 to 24+/-12, the bound K(+) from 27+/-3 to 7+/-2, the bound Mg(2+) from 20+/-2 to 3+/-1 and the bound calcium from 8+/-1 to <1nmol/mg of protein. 3. The activities of the Na(+)+K(+)+Mg(2+)-stimulated adenosine triphosphatase and the Na(+)-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5mum (ATP/protein ratio 12.5pmol/mug). 4. The Na(+)-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5mum-magnesium chloride and 2mum-potassium chloride. Addition of 2.5mum-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na(+)-dependent ATP hydrolysis was partly restored with 2.5mum-magnesium chloride; addition of K(+) in the range 2-10mum-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0 degrees C with 0.5nmol of K(+)/mg of protein so that the final added K(+) in the reaction mixture was 0.1mum restored the Na(+)-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [(42)K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K(+)/mg of protein was linear over a period of 20min and was inhibited by Na(+). Half-maximal inhibition of (42)K(+)-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na(+)-dependent hydrolysis of ATP observed in the unwashed preparation is due to activation by bound K(+) and Mg(2+) of the Na(+)+K(+)+Mg(2+)-stimulated adenosine triphosphatase system and (b) that the enzyme system is able to bind K(+) from a solution of 0.5mum-potassium chloride.  相似文献   

3.
1. Ox brain microsomal fractions were labelled with [(32)P]ATP in the presence of Na(+) and the reaction was stopped with sodium dodecyl sulphate. The Na(+)-dependent bound phosphate was isolated on Sephadex G-25 and by acetone precipitation. The bound phosphate isolated under these neutral conditions was labile to hydroxylamine and gave the same pH profile of hydrolysis as that isolated by precipitation with strong acids. 2. When membrane protein was labelled with [(32)P]ATP, solubilized with sodium dodecyl sulphate and fractionated on Sepharose 6B, the Na(+)-dependent label emerged in a peak corresponding to protein of molecular weight 570000-580000. On fractionation of this protein peak on polyacrylamide gels containing detergent and urea, the Na(+)-dependent label occurred in a single band corresponding to a protein of molecular weight 102000. 3. Fractionation on Sepharose 6B of protein labelled with [(32)P]ATP in the absence of Na(+) revealed three labelled peaks, one of which corresponded in position to the Na(+)-dependent label. Electrophoresis of this peak material on polyacrylamide gels showed that most of the label occurred in two fast-running bands. Cyclic AMP stimulated the labelling in these two bands, but had no effect on the labelling of the band corresponding in position to the Na(+)-dependent label. 4. Di-isopropyl [(32)P]phosphorofluoridate also labelled the band corresponding to the Na(+)-dependent label on gel electrophoresis. The labelling of this band by the reagent was inhibited by 50-60% by 3mm-ATP, but there was no evidence to suggest that the group labelled is normally phosphorylated by ATP.  相似文献   

4.
To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the [gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of [alpha32P]-or [gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.  相似文献   

5.
Adding 15 mM free Mg2+ decreased Vmax of the Na+/K(+)-ATPase reaction. Mg2+ also decreased the K0.5 for K+ activation, as a mixed inhibitor, but the increased inhibition at higher K+ concentrations diminished as the Na+ concentration was raised. Inhibition was greater with Rb+ but less with Li+ when these cations substituted for K+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg2+ increased the K0.5 for Na(+)-activation of the Na+/K(+)-ATPase and Na(+)-ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg2+ and K0.5 for Na+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg2+ and Na+. In the K(+)-phosphatase reaction catalyzed by this enzyme Mg2+ was a (near) competitor toward K+. Adding Na+ with K+ inhibited phosphatase activity, but under these conditions 15 mM Mg2+ stimulated rather than inhibited; still higher Mg2+ concentrations then inhibited with K+ plus Na+. Similar stimulation and inhibition occurred when Mn2+ was substituted for Mg2+, although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Mg2+, require Mg2+ release at multiple steps. The data are accommodated by a scheme for the Na+/K(+)-ATPase with three alternative points for release: before MgATP binding, before K+ release and before Na+ binding. The latter alternatives necessitate two Mg2+ ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the phosphate and the nucleotide domains of the active site.  相似文献   

6.
Halenaquinol inhibited the partial reactions of ATP hydrolysis by rat brain cortex Na(+),K(+)-ATPase, such as [3H]ATP binding to the enzyme, Na(+)-dependent front-door phosphorylation from [gamma-(33)P]ATP, and also Na(+)- and K(+)-dependent E(1)<-->E(2) conformational transitions of the enzyme. Halenaquinol abolished the positive cooperativity between the Na(+)- and K(+)-binding sites on the enzyme. ATP and sulfhydryl-containing reagents (cysteine and dithiothreitol) protected the Na(+),K(+)-ATPase against inhibition. Halenaquinol can react with additional vital groups in the enzyme after blockage of certain sulfhydryl groups with 5,5'-dithio-bis-nitrobenzoic acid. Halenaquinol inhibited [3H]ouabain binding to Na(+),K(+)-ATPase under phosphorylating and non-phosphorylating conditions. Binding of fluorescein 5'-isothiocyanate to Na(+),K(+)-ATPase and intensity of fluorescence of enzyme tryptophanyl residues were decreased by halenaquinol. We suggest that interaction of halenaquinol with the essential sulfhydryls in/or near the ATP-binding site of Na(+),K(+)-ATPase resulted in a change of protein conformation and subsequent alteration of overall and partial enzymatic reactions.  相似文献   

7.
The binding of Ca2+ to monolayers and bilayers of phosphatidylserine has been investigated as a function of pH, ionic strength (NaCl concentration) and Ca2+ concentration using surface and colloid chemical techniques. The molar ratio of lipid to bound calcium decreases to 2 as the Ca2+ concentration is increased to about 0.1 mM. At [Ca2+] greater than 0.1 mM a 1:1 complex is formed. The apparent binding constant Ka ranges from about approximately 10(6) - 10(4) l/mol depending on the Ca2+ concentration. After allowing for electrostatic effects and neighbour group interactions, the intrinsic binding constant Ki of the phosphorylserine polar group at pH 7 (I = 0.01 M), where it carries a net negative charge of one, is approximately 10(4) l/mol; consistent values for Ki were obtained using several independent approaches. Ka for Ca2+ binding decreases with increasing NaCl concentration because the monovalent cations compete with Ca2+ for the same binding site. Na+ and K+ are equally effective in displacing 45Ca2+ adsorbed to monolayers of phosphatidylserine, both with respect to the kinetics and the equilibrium of the displacement. Ka for the reaction between phosphatidylserine and monovalent cations is about 10(3)-fold smaller than that of Ca2+. An investigation of the binding of Mn2+ to phosphatidylserine by both surface chemical and nuclear magnetic resonance methods shows that this cation has a similar binding constant to that of Ca2+. The Ca2+-binding capabilities of monolayers containing only carboxyl groups (i.e. arachidic acid) and phosphodiester groups (i.e. dicetyl phosphate) have also been determined; the apparent pK for the - COOH group in monolayers is larger than or equal to 9 and that for the phosphodiester group is less than 4. Since these groups do not retain the same pK values when they are in close proximity in the phosphorylserine group, the relative contributions of the two groups to the binding of Ca2+ to phosphatidylserine is not obvious.  相似文献   

8.
2'-Phosphophloretin (2'-PP), a phosphorylated derivative of the plant chalcone, was synthesized. The effect of 2'-PP, on Na(+)-dependent phosphate uptake into intestinal brush-border membrane vesicles (BBMV) isolated from rabbit and rat duodenum and jejunum was examined. 2'-PP decreased Na(+)-dependent phosphate uptake into rabbit BBMV with an IC(50) of 55 nM and into rat BBMV with an IC(50) of 58 nM. 2'-PP did not affect Na(+)-dependent glucose, Na(+)-dependent sulfate, or Na(+)-dependent alanine uptake by rabbit intestinal BBMVs. 2'-PP inhibition of rabbit intestinal BBMV Na(+)-dependent phosphate uptake was sensitive to external phosphate concentration, suggesting that 2'-PP inhibition of Na(+)-dependent phosphate uptake was competitive with respect to phosphate. Binding of [(3)H]2'-PP to rabbit intestinal BBMV was examined. Binding of [(3)H]2'-PP was Na(+)-dependent with a K(0.5) for Na(+)(Na(+) concentration for 50% 2'-PP binding) of 30 mM. The apparent K(s) for Na(+)-dependent [(3)H]2'-PP binding to rabbit BBMVs was 58 nM in agreement with the IC(50) for 2'-PP inhibition of Na(+)-dependent phosphate uptake. These results indicate that 2'-PP bound to rabbit or rat intestinal BBMV Na(+)-phosphate cotransporter and inhibited Na(+)-dependent phosphate uptake. In rats treated with 2'-PP by daily gavage, the effect of 2'-PP on serum phosphate, serum glucose, and serum calcium was examined. In a concentration-dependent manner, 2'-PP reduced serum phosphate by 45% 1 wk after starting treatment. 2'-PP did not alter serum calcium or serum glucose. The apparent IC(50) for 2'-PP in vivo was 3 microM.  相似文献   

9.
1. Ox-brain microsomes were incubated with [gamma-(32)P]ATP under various conditions. After the reaction, which was stopped with trichloroacetic acid, a small amount of phosphate remained bound to the washed precipitate. 2. Properties of the bound phosphate were studied by treatment with buffers and solvents. 3. The Na(+)-dependent increment in bound phosphate, predominant at low ATP concentration and features of which suggest involvement in the concomitant adenosine-triphosphatase activity, was rapidly released in both circumstances. 4. In aqueous media the labile phosphate was released entirely as inorganic phosphate at faster rates with increasing alkalinity. 5. In acidified chloroform-alcohol mixtures the released phosphate appeared both as inorganic phosphate and different single (32)P-labelled organic phosphates, which were tentatively identified as the relevant mono-alkyl phosphates, presumably derived by acid-catalysed alcoholysis of a labelled microsomal component, or components. 6. The labile phosphate corresponded to the P exchangeable with non-radioactive ATP added during the enzyme reaction. 7. The possible molecular nature of the labile fraction of the bound phosphate is discussed.  相似文献   

10.
1. The effect of chemical agents on the turnover of the Na(+)-dependent bound phosphate and the simultaneous Na(+)-dependent hydrolysis of ATP by a membrane preparation from ox brain was studied at an ATP/protein ratio of 12.5pmol/mug. 2. The agents were added immediately after phosphorylation of the preparation in a medium containing 50mm-sodium chloride and 2.5mum-[gamma-(32)P]ATP. 3. Concentrations of sodium chloride above 150mm, calcium chloride to 20mm and suramin to 1.4mm inhibited both phosphorylation and dephosphorylation and concomitantly slowed ATP hydrolysis. At 125mm-sodium chloride dephosphorylation and hydrolysis were slightly slowed without affecting phosphorylation. 4. Ethanol to 1.6m concentration inhibited dephosphorylation without affecting phosphorylation; the bound phosphate was increased and ATP hydrolysis slowed. 5. Ouabain to 4mm concentration partially inhibited ATP hydrolysis and caused a transient (1-2s) rise in bound phosphate followed by a rapid fall to a lower plateau value, which eventually declined to zero by the time ATP hydrolysis was complete. 6. Of the detergents examined Lubrol W, Triton X-100 and sodium deoxycholate had no significant effect on turnover. Sodium dodecyl sulphate and sodium decyl sulphate to 3.5mm and 20mm respectively completely inhibited turnover and ATP hydrolysis and stabilized the bound phosphate.  相似文献   

11.
Alanine substitutions were made for 15 amino acids in the cytoplasmic loop between transmembrane helices 6 and 7 (L6/7) of the human alpha(1)-subunit of Na,K-ATPase. Most mutations reduced Na,K-ATPase activity by less than 50%; however, the mutations R834A, R837A, and R848A reduced Na,K-ATPase activity by 75, 89, and 66%, respectively. Steady-state phosphoenzyme formation from ATP was reduced in mutants R834A, R837A, and R848A, and R837A also had a faster E(2)P --> E(2) dephosphorylation rate compared with the wild-type enzyme. Effects of L6/7 mutations on the phosphorylation domain of the protein were also demonstrated by (18)O exchange, which showed that intrinsic rate constants for P(i) binding and/or reaction with the protein were altered. Although most L6/7 mutations had no effect on the interaction of Na(+) or K(+) with Na,K-ATPase, the E825A, E828A, R834A, and R837A mutations reduced the apparent affinity of the enzyme for both Na(+) and K(+) by 1.5-3-fold. 1-Bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU(3+)), a competitive antagonist of Rb(+) and Na(+) occlusion, was used to test whether charged residues in L6/7 are involved in binding monovalent cations and cation antagonists. Br-TITU(3+) inhibited ouabain binding to wild type Na,K-ATPase with an IC(50) of 30 microM. Ouabain binding to the E825A, E828A, R834A, or R837A mutants was still inhibited by Br-TITU(3+), indicating that Br-TITU(3+) does not bind to charged residues in L6/7. This observation makes it unlikely that L6/7 functions as a cytoplasmic cation binding site in Na,K-ATPase, and together with the effects of L6/7 mutations on phosphate interactions with the enzyme suggests that L6/7 is important in stabilizing the phosphorylation domain and its relationship to the ion binding sites of the protein.  相似文献   

12.
1. Preparations of mouse ascites-tumour cells depleted of ATP and Na(+) ions accumulated l-methionine, in the presence of cyanide and deoxyglucose, from a 1mm solution containing 80mequiv. of Na(+)/l and about 5mequiv. of K(+)/l. Valinomycin increased, from about 4 to 16, the maximum value of the ratio of the cellular to extracellular concentrations of methionine formed under these conditions without markedly affecting the distributions of Na(+) and of K(+). Similar observations were made with 2-aminoisobutyrate, glycine and l-leucine. Increasing the extracellular concentration of K(+) progressively decreased the accumulation of methionine in the presence of valinomycin. Over the physiological range of ionic gradients, the system behaved as though the absorption of methionine with Na(+) was closely coupled to the electrogenic efflux of K(+) through the ionophore. The process was insensitive to ouabain and so the sodium pump was probably not involved. 2. The amount of methionine accumulated during energy metabolism was similar to the optimal accumulation in the presence of valinomycin when ATP was lacking. It was also similarly affected by increasing the methionine concentration. 3. A mixture of nigericin and tetrachlorosalicylanilide mimicked the action of valinomycin. The anilide derivative inhibited the absorption of 2-aminoisobutyrate in the presence of valinomycin, but not in its absence. 4. Gramicidin inhibited methionine absorption and caused the preparations to absorb Na(+) and lose K(+). 5. The observations appear to verify the principle underlying the gradient hypothesis by showing that the tumour cells can efficiently couple the electrochemical gradient of Na(+) to the amino acid gradient.  相似文献   

13.
An investigation has been made to determine the effectiveness of univalent cations as cofactors for the inductive synthesis of nitrate reductase. In these experiments K(+) functions more effectively as the univalent cation activator than other univalent cations. Substitution of Rb(+) for K(+) resulted in enzyme formation at a rate of about one-half of that obtained with K(+). Sodium, Li(+), or NH(4) (+) either failed to stimulate or completely inhibited the inductive formation of the enzyme. When no univalent cations were present in the induction medium, enzyme formation was delayed for an initial 3-hour period in contrast to the normal one-hour delay in enzyme formation where adequate K(+) was present in the induction medium.During the period of inductive formation of nitrate reductase the activity of pyruvic kinase, a constitutive enzyme, was assayed under conditions where adequate K(+) was present. Results indicate that the presence of the different univalent cations in the induction medium had no striking effect on the activity of this enzyme during the induction period.  相似文献   

14.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Uptake of SO(4) (2-) into brush-border membrane vesicles isolated from rat kindey cortex by a Ca(2+)-precipitation method was investigated by using a rapid-filtration technique. Uptake of SO(4) (2-) by the vesicles was osmotically sensitive and represented transport into an intra-vesicular space. Transport of SO(4) (2-) by brush-border membranes was stimulated in the presence of Na(+), compared with the presence of K(+) or other univalent cations. A typical ;overshoot' phenomenon was observed in the presence of an NaCl gradient (100mm-Na(+) outside/zero mm-Na(+) inside). Radioactive-SO(4) (2-) exchange was faster in the presence of Na(+) than in the presence of K(+). Addition of gramicidin-D, an ionophore for univalent cations, decreased the Na(+)-gradient-driven SO(4) (2-) uptake. SO(4) (2-) uptake was only saturable in the presence of Na(+). Counter-transport of Na(+)-dependent SO(4) (2-) transport was shown with MoO(4) (2-) and S(2)O(3) (2-), but not with PO(4) (2-). Changing the electrical potential difference across the vesicle membrane by establishing different diffusion potentials (anion replacement; K(+) gradient+/-valinomycin) was not able to alter Na(+)-dependent SO(4) (2-) uptake. The experiments indicate the presence of an electroneutral Na(+)/SO(4) (2-)-co-transport system in brush-border membrane vesicles isolated from rat kidney cortex.  相似文献   

16.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

17.
The phosphatidylinositol kinase of rat brain   总被引:23,自引:13,他引:10       下载免费PDF全文
1. The presence of a phosphatidylinositol kinase in homogenates of adult rat brain was shown by using labelled ATP or labelled phosphatidylinositol. 2. The kinase was activated by Mg(2+) or Mn(2+) and inhibited by Ca(2+), Cu(2+), K(+), Na(+) and F(-). 3. The detergents sodium deoxycholate, Cutscum and Triton X-100 markedly stimulated the reaction; sodium taurocholate, Tween-20 and cetyltrimethyl-ammonium bromide were less effective. 4. The activity of the enzyme was dependent on SH groups. 5. The subcellular distribution of the kinase in brain resembled that of Na(+)-plus-K(+)-stimulated adenosine triphosphatase and 5'-nucleotidase.  相似文献   

18.
Extracellular ATP has been shown to increase the Na+ permeability of human lymphocytes by 3 to 12-fold. The kinetics of this ATP-induced response were studied by measuring 22Na+ influx into chronic lymphocytic leukemic lymphocytes incubated in low-sodium media without divalent cations. ATP-stimulated uptake of 22Na-ions was linear over 4 min incubation and this influx component showed a sigmoid dependence on ATP concentration. Hill analysis yielded a K1/2 of 160 microM and a n value of 2.5. The nucleotide ATP-gamma-S (1-2 mM) gave 30% of the permeability increase produced by ATP, but UTP (2 mM) and dTTP (2 mM) had no effect on 22Na influx. The amiloride analogs 5-(N-ethyl-N-isopropyl) amiloride and 5-(N,N-hexamethylene) amiloride, which are potent inhibitors of Na(+)-H+ countertransport, abolished 72-95% of the ATP-stimulated 22Na+ influx. However, the involvement of Na(+)-H+ countertransport in the ATP-stimulated Na+ influx was excluded by three lines of evidence. Sodium influx was stimulated 7-fold by extracellular ATP but only 2.4-fold by hypertonic conditions which are known to activate Na(+)-H+ countertransport. Addition of ATP to lymphocytes produced no change in intracellular pH when these cells were suspended in isotonic NaCl media. Finally ATP caused a membrane depolarization of lymphocytes which is inconsistent with stimulation of electroneutral Na(+)-H+ exchange. These data suggest that ATP acts cooperatively to induce the formation of membrane channels which allow increased Na+ influx by a pathway which is partially inhibited by amiloride and its analogs.  相似文献   

19.
The focus of this article is on progress in establishing structure-function relationships through site-directed mutagenesis and direct binding assay of Tl(+), Rb(+), K(+), Na(+), Mg(2+) or free ATP at equilibrium in Na,K-ATPase. Direct binding may identify residues coordinating cations in the E(2)[2K] or E(1)P[3Na] forms of the ping-pong reaction sequence and allow estimates of their contributions to the change of Gibbs free energy of binding. This is required to understand the molecular basis for the pronounced Na/K selectivity at the cytoplasmic and extracellular surfaces. Intramembrane Glu(327) in transmembrane segment M4, Glu(779) in M5, Asp(804) and Asp(808) in M6 are essential for tight binding of K(+) and Na(+). Asn(324) and Glu(327) in M4, Thr(774), Asn(776), and Glu(779) in 771-YTLTSNIPEITP of M5 contribute to Na(+)/K(+) selectivity. Free ATP binding identifies Arg(544) as essential for high affinity binding of ATP or ADP. In the 708-TGDGVND segment, mutations of Asp(710) or Asn(713) do not interfere with free ATP binding. Asp(710) is essential and Asn(713) is important for coordination of Mg(2+) in the E(1)P[3Na] complex, but they do not contribute to Mg(2+) binding in the E(2)P-ouabain complex. Transition to the E(2)P form involves a shift of Mg(2+) coordination away from Asp(710) and Asn(713) and the two residues become more important for hydrolysis of the acyl phosphate bond at Asp(369).  相似文献   

20.
A monoclonal antibody (mAb50c) against the native porcine renal Na+/K(+)-transporting adenosinetriphosphatase (EC 3.6.1.37, ATP phosphohydrolase) (Na+/K(+)-ATPase) was characterized. The antibody could be classified as a conformation-dependent antibody, since it did not bind to Na+/K(+)-ATPase denatured by detergent and its binding was affected by the normal conformational changes of the enzyme induced by ligands. The binding was the greatest in the presence of Na+, ATP or Mg2+ (E1 form), slightly less in the presence of K+ (E2K form) and the least when the enzyme was phosphorylated, especially in the actively hydrolyzing form in the presence of Na+, Mg2+ and ATP. The antibody inhibited both the Na+,K(+)-ATPase activity and the K(+)-dependent p-nitrophenylphosphatase activity by 25%, but it had no effect on Na(+)-dependent ATPase activity. The antibody partially inhibited the fluorescence changes of the enzyme labeled with 5'-isothiocyanatofluorescein after the addition of orthophosphate and Mg2+, and after the addition of ouabain. Proteolytic studies suggest that a part of the epitope is located on the cytoplasmic surface of the N-terminal half of the alpha-subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号