首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The yeast exosome is a complex of 3' --> 5' exoribonucleases. Sequence analysis identified putative human homologues for exosome components, although several were found only as expressed sequence tags. Here we report the cloning of full-length cDNAs, which encode putative human homologues of the Rrp40p, Rrp41p, and Rrp46p components of the exosome. Recombinant proteins were expressed and used to raise rabbit antisera. In Western blotting experiments, these decorated HeLa cell proteins of the predicted sizes. All three human proteins were enriched in the HeLa cells nucleus and nucleolus, but were also clearly detected in the cytoplasm. Size exclusion chromatography revealed that hRrp40p, hRrp41p, and hRrp46p were present in a large complex. This cofractionated with the human homologues of other exosome components, hRrp4p and PM/Scl-100. Anti-PM/Scl-positive patient sera coimmunoprecipitated hRrp40p, hRrp41p, and hRrp46p demonstrating their physical association. The immunoprecipitated complex exhibited 3' --> 5' exoribonuclease activity in vitro. hRrp41p was expressed in yeast and shown to suppress the lethality of genetic depletion of yeast Rrp41p. We conclude that hRrp40p, hRrp41p, and hRrp46p represent novel components of the human exosome complex.  相似文献   

2.
The autoantigenic polymyositis/scleroderma (PM/Scl) complex was recently shown to be the human homologue of the yeast exosome, which is an RNA-processing complex. Our aim was to assess whether, in addition to targeting the known autoantigens PM/Scl-100 and PM/Scl-75, autoantibodies also target recently identified components of the PM/Scl complex. The prevalence of autoantibodies directed to six novel human exosome components (hRrp4p, hRrp40p, hRrp41p, hRrp42p, hRrp46p, hCsl4p) was determined in sera from patients with idiopathic inflammatory myopathy (n = 48), scleroderma (n = 11), or the PM/Scl overlap syndrome (n = 10). The sera were analyzed by enzyme-linked immunosorbent assays and western blotting using the affinity-purified recombinant proteins. Our results show that each human exosome component is recognized by autoantibodies. The hRrp4p and hRrp42p components were most frequently targeted. The presence of autoantibodies directed to the novel components of the human exosome was correlated with the presence of the anti-PM/Scl-100 autoantibody in the sera of patients with idiopathic inflammatory myopathy (IIM), as was previously found for the anti-PM/Scl-75 autoantibody. Other clear associations between autoantibody activities were not found. These results further support the conception that the autoimmune response may initially be directed to PM/Scl-100, whereas intermolecular epitope spreading may have caused the autoantibody response directed to the associated components.  相似文献   

3.
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. We demonstrate that the two human proteins hCsl4p and hRrp42p, which have been identified on the basis of their sequence homology with Saccharomyces cerevisiae proteins, are associated with the human exosome. By mammalian two-hybrid and GST pull-down assays, we show that the hCsl4p protein interacts directly with two other exosome proteins, hRrp42p and hRrp46p. Mutants of hCsl4p that fail to interact with either hRrp42p or hRrp46p are also not able to associate with exosome complexes in vivo. These results indicate that the association of hCsl4p with the exosome is mediated by protein-protein interactions with hRrp42p and hRrp46p.  相似文献   

4.
The autoantigenic polymyositis/scleroderma (PM/Scl) complex was recently shown to be the human homologue of the yeast exosome, which is an RNA-processing complex. Our aim was to assess whether, in addition to targeting the known autoantigens PM/Scl-100 and PM/Scl-75, autoantibodies also target recently identified components of the PM/Scl complex. The prevalence of autoantibodies directed to six novel human exosome components (hRrp4p, hRrp40p, hRrp41p, hRrp42p, hRrp46p, hCsl4p) was determined in sera from patients with idiopathic inflammatory myopathy (n = 48), scleroderma (n = 11), or the PM/Scl overlap syndrome (n = 10). The sera were analyzed by enzyme-linked immunosorbent assays and western blotting using the affinity-purified recombinant proteins. Our results show that each human exosome component is recognized by autoantibodies. The hRrp4p and hRrp42p components were most frequently targeted. The presence of autoantibodies directed to the novel components of the human exosome was correlated with the presence of the anti-PM/Scl-100 autoantibody in the sera of patients with idiopathic inflammatory myopathy (IIM), as was previously found for the anti-PM/Scl-75 autoantibody. Other clear associations between autoantibody activities were not found. These results further support the conception that the autoimmune response may initially be directed to PM/Scl-100, whereas intermolecular epitope spreading may have caused the autoantibody response directed to the associated components.  相似文献   

5.
Rrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3′ processing of RNA during RNA turnover and surveillance. The Rrp46 homolog, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis in Caenorhabditis elegans. Here we report the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.9 Å and 2.0 Å, respectively. We found that recombinant human Rrp46 (hRrp46), oRrp46, and CRN-5 are homodimers, and that endogenous hRrp46 and oRrp46 also form homodimers in a cellular environment, in addition to their association with a protein complex. Dimeric oRrp46 had both phosphorolytic RNase and hydrolytic DNase activities, whereas hRrp46 and CRN-5 bound to DNA without detectable nuclease activity. Site-directed mutagenesis in oRrp46 abolished either its DNase (E160Q) or RNase (K75E/Q76E) activities, confirming the critical importance of these residues in catalysis or substrate binding. Moreover, CRN-5 directly interacted with the apoptotic nuclease CRN-4 and enhanced the DNase activity of CRN-4, suggesting that CRN-5 cooperates with CRN-4 in apoptotic DNA degradation. Taken together all these results strongly suggest that Rrp46 forms a homodimer separately from exosome complexes and, depending on species, is either a structural or catalytic component of the machinery that cleaves DNA during apoptosis.  相似文献   

6.
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. Here we present a model for the assembly of the six human RNase PH-like exosome subunits into a hexameric ring structure. In part, this structure is on the basis of the evolutionarily related bacterial degradosome, the core of which consists of three copies of the PNPase protein, each containing two RNase PH domains. In our model three additional exosome subunits, which contain S1 RNA-binding domains, are positioned on the outer surface of this ring. Evidence for this model was obtained by the identification of protein-protein interactions between individual exosome subunits in a mammalian two-hybrid system. In addition, the results of co-immunoprecipitation assays indicate that at least two copies of hRrp4p and hRrp41p are associated with a single exosome, suggesting that at least two of these ring structures are present in this complex. Finally, the identification of a human gene encoding the putative human counterpart of the bacterial PNPase protein is described, which suggests that the exosome is not the eukaryotic equivalent of the bacterial degradosome, although they do share similar functional activities.  相似文献   

7.
Functions of the exosome in rRNA, snoRNA and snRNA synthesis.   总被引:28,自引:0,他引:28       下载免费PDF全文
The yeast nuclear exosome contains multiple 3'-->5' exoribonucleases, raising the question of why so many activities are present in the complex. All components are required during the 3' processing of the 5.8S rRNA, together with the putative RNA helicase Dob1p/Mtr4p. During this processing three distinct steps can be resolved, and hand-over between different exonucleases appears to occur at least twice. 3' processing of snoRNAs (small nucleolar RNAs) that are excised from polycistronic precursors or from mRNA introns is also a multi-step process that involves the exosome, with final trimming specifically dependent on the Rrp6p component. The spliceosomal U4 snRNA (small nuclear RNA) is synthesized from a 3' extended precursor that is cleaved by Rnt1p at sites 135 and 169 nt downstream of the mature 3' end. This cleavage is followed by 3'-->5' processing of the pre-snRNA involving the exosome complex and Dob1p. The exosome, together with Rnt1p, also participates in the 3' processing of the U1 and U5 snRNAs. We conclude that the exosome is involved in the processing of many RNA substrates and that different components can have distinct functions.  相似文献   

8.
The human exosome is a 3'-5' exoribonuclease complex that functions both in the nucleus and in the cytoplasm to either degrade or process RNA. Little is known yet about potential differences among core exosome complexes in these different cellular compartments and the roles of the individual subunits in maintaining a stable and functional complex. Glycerol gradient sedimentation analyses indicated that a significant subset of nuclear exosomes is present in much larger complexes (60-80S) than the cytoplasmic exosomes ( approximately 10S). Interestingly, siRNA-mediated knock-down experiments indicated that the cytoplasmic exosome is down-regulated much more efficiently than the nuclear exosome. In addition, we observed that knock-down of hRrp41p or hRrp4p but not PM/Scl-100 or PM/Scl-75 leads to codepletion of other subunits. Nevertheless, PM/Scl-100 and PM/Scl-75 are required to maintain normal levels of three different mRNA reporters: a wild-type beta-globin mRNA, a beta-globin mRNA containing an AU-rich (ARE) instability element, and a beta-globin mRNA bearing a premature termination codon (PTC). The increased levels of ARE- and the PTC-containing mRNAs upon down-regulation of the different exosome subunits, in particular PM/Scl-100, appeared to be due to decreased turnover rates. These results indicate that, although not required for exosome stability, PM/Scl-100 and PM/Scl-75 are involved in mRNA degradation, either as essential subunits of a functional exosome complex or as exosome-independent proteins.  相似文献   

9.
The RNA exosome processes and degrades RNAs in archaeal and eukaryotic cells. Exosomes from yeast and humans contain two active exoribonuclease components, Rrp6p and Dis3p/Rrp44p. Rrp6p is concentrated in the nucleus and the dependence of its function on the nine-subunit core exosome and Dis3p remains unclear. We found that cells lacking Rrp6p accumulate poly(A)+ rRNA degradation intermediates distinct from those found in cells depleted of Dis3p, or the core exosome component Rrp43p. Depletion of Dis3p in the absence of Rrp6p causes a synergistic increase in the levels of degradation substrates common to the core exosome and Rrp6p, but has no effect on Rrp6p-specific substrates. Rrp6p lacking a portion of its C-terminal domain no longer co-purifies with the core exosome, but continues to carry out RNA 3′-end processing of 5.8S rRNA and snoRNAs, as well as the degradation of certain truncated Rrp6-specific rRNA intermediates. However, disruption of Rrp6p–core exosome interaction results in the inability of the cell to efficiently degrade certain poly(A)+ rRNA processing products that require the combined activities of Dis3p and Rrp6p. These findings indicate that Rrp6p may carry out some of its critical functions without physical association with the core exosome.  相似文献   

10.
The exosome is a complex of 3' --> 5' exoribonucleases that functions in a variety of cellular processes, all concerning the processing or degradation of RNA. Paradoxically, the previously described cDNA for the human autoantigenic exosome subunit PM/Scl-75 (Alderuccio, F., Chan, E. K., and Tan, E. M. (1991) J. Exp. Med. 173, 941-952) encodes a polypeptide that failed to interact with the exosome complex. Here, we describe the cloning of a more complete cDNA for PM/Scl-75 encoding 84 additional amino acids at its N terminus. We show that only the longer polypeptide is able to associate with the exosome complex. This interaction is most likely mediated by protein-protein interactions with two other exosome subunits, hRrp46p and hRrp41p, one of which was confirmed in a mammalian two-hybrid system. In addition we show that the putative nuclear localization signal present in the C-terminal region of PM/Scl-75 is sufficient, although not essential for nuclear localization of the protein. Moreover, the deletion of this element abrogated the nucleolar accumulation of PM/Scl-75, although its association with the exosome was not disturbed. This suggests that this basic element of PM/Scl-75 plays a role in targeting the exosome to the nucleolus.  相似文献   

11.
Non-coding RNAs (ncRNAs) play critical roles in gene regulation. In eukaryotic cells, ncRNAs are processed and/or degraded by the nuclear exosome, a ribonuclease complex containing catalytic subunits Dis3 and Rrp6. The TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex is a critical exosome cofactor in budding yeast that stimulates the exosome to process/degrade ncRNAs and human TRAMP components have recently been identified. Importantly, mutations in exosome and exosome cofactor genes cause neurodegenerative disease. How the TRAMP complex interacts with other exosome cofactors to orchestrate regulation of the exosome is an open question. To identify novel interactions of the TRAMP exosome cofactor, we performed a high copy suppressor screen of a thermosensitive air1/2 TRAMP mutant. Here, we report that the Nab3 RNA-binding protein of the Nrd1-Nab3-Sen1 (NNS) complex is a potent suppressor of TRAMP mutants. Unlike Nab3, Nrd1 and Sen1 do not suppress TRAMP mutants and Nrd1 binding is not required for Nab3-mediated suppression of TRAMP suggesting an independent role for Nab3. Critically, Nab3 decreases ncRNA levels in TRAMP mutants, Nab3-mediated suppression of air1/2 cells requires the nuclear exosome component, Rrp6, and Nab3 directly binds Rrp6. We extend this analysis to identify a human RNA binding protein, RALY, which shares identity with Nab3 and can suppress TRAMP mutants. These results suggest that Nab3 facilitates TRAMP function by recruiting Rrp6 to ncRNAs for processing/degradation independent of Nrd1. The data raise the intriguing possibility that Nab3 and Nrd1 can function independently to recruit Rrp6 to ncRNA targets, providing combinatorial flexibility in RNA processing.  相似文献   

12.
13.
14.
Nuclear RNA exosome is the main 3′→5′ RNA degradation and processing complex in eukaryotic cells and its dysregulation therefore impacts gene expression and viability. In this work we show that RNA exosome activity is necessary for maintaining cell wall stability in yeast Saccharomyces cerevisiae. While the essential RNA exosome catalytic subunit Dis3 provides exoribonuclease catalytic activity, the second catalytic subunit Rrp6 has a noncatalytic role in this process. RNA exosome cofactors Rrp47 and Air1/2 are also involved. RNA exosome mutants undergo osmoremedial cell lysis at high temperature or at physiological temperature upon treatment with cell wall stressors. Finally, we show that a defect in protein glycosylation is a major reason for cell wall instability of RNA exosome mutants. Genes encoding enzymes that act in the early steps of the protein glycosylation pathway are down-regulated at high temperature in cells lacking Rrp6 protein or Dis3 exoribonuclease activity and overexpression of the essential enzyme Psa1, that catalyzes synthesis of the mannosylation precursor, suppresses temperature sensitivity and aberrant morphology of these cells. Furthermore, this defect is connected to a temperature-dependent increase in accumulation of noncoding RNAs transcribed from loci of relevant glycosylation-related genes.  相似文献   

15.
mRNA decapping is a critical step in the control of mRNA stability and gene expression and is carried out by the Dcp2 decapping enzyme. Dcp2 is an RNA binding protein that must bind RNA in order to recognize the cap for hydrolysis. We demonstrate that human Dcp2 (hDcp2) preferentially binds to a subset of mRNAs and identify sequences at the 5' terminus of the mRNA encoding Rrp41, a core subunit component of the RNA exosome, as a specific hDcp2 substrate. A 60-nucleotide element at the 5' end of Rrp41 mRNA was identified and shown to confer more efficient decapping on a heterologous RNA both in vitro and upon transfection into cells. Moreover, reduction of hDcp2 protein levels in cells resulted in a selective stabilization of the Rrp41 mRNA, confirming it as a downstream target of hDcp2 regulation. These findings demonstrate that hDcp2 can specifically bind to and regulate the stability of a subset of mRNAs, and its intriguing regulation of the 3'-to-5' exonuclease exosome subunit suggests a potential interplay between 5'-end mRNA decapping and 3'-end mRNA decay.  相似文献   

16.
17.
18.
Turnover of mRNA in the cytoplasm of human cells is thought to be redundantly conducted by the monomeric 5′‐3′ exoribonuclease hXRN1 and the 3′‐5′ exoribonucleolytic RNA exosome complex. However, in addition to the exosome‐associated 3′‐5′ exonucleases hDIS3 and hDIS3L, the human genome encodes another RNase II/R domain protein—hDIS3L2. Here, we show that hDIS3L2 is an exosome‐independent cytoplasmic mRNA 3′‐5′ exonuclease, which exhibits processive activity on structured RNA substrates in vitro. hDIS3L2 associates with hXRN1 in an RNA‐dependent manner and can, like hXRN1, be found on polysomes. The impact of hDIS3L2 on cytoplasmic RNA metabolism is revealed by an increase in levels of cytoplasmic RNA processing bodies (P‐bodies) upon hDIS3L2 depletion, which also increases half‐lives of investigated mRNAs. Consistently, RNA sequencing (RNA‐seq) analyses demonstrate that depletion of hDIS3L2, like downregulation of hXRN1 and hDIS3L, causes changed levels of multiple mRNAs. We suggest that hDIS3L2 is a key exosome‐independent effector of cytoplasmic mRNA metabolism.  相似文献   

19.
20.
The exosome is a complex of 3′→5′ exoribonucleases which is involved in many RNA metabolic processes. To regulate these functions distinct proteins are believed to recruit the exosome to specific substrate RNAs. Here, we demonstrate that M-phase phosphoprotein 6 (MPP6), a protein reported previously to co-purify with the TAP-tagged human exosome, accumulates in the nucleoli of HEp-2 cells and associates with a subset of nuclear exosomes as evidenced by co-immunoprecipitation and biochemical fractionation experiments. In agreement with its nucleolar accumulation, siRNA-mediated knock-down experiments revealed that MPP6 is involved in the generation of the 3′ end of the 5.8S rRNA. The accumulation of the same processing intermediates after reducing the levels of either MPP6 or exosome components strongly suggests that MPP6 is required for the recruitment of the exosome to the pre-rRNA. Interestingly, MPP6 appeared to display RNA-binding activity in vitro with a preference for pyrimidine-rich sequences, and to bind to the ITS2 element of pre-rRNAs. Our data indicate that MPP6 is a nucleolus-specific exosome co-factor required for its role in the maturation of 5.8S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号