首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herpes simplex virus DNA replication proteins localize in characteristic patterns corresponding to viral DNA replication structures in the infected cell nucleus. The intranuclear spatial organization of the HSV DNA replication structures and the factors regulating their nuclear location remain to be defined. We have used the HSV ICP8 DNA-binding protein and bromodeoxyuridine labeling as markers for sites of herpesviral DNA synthesis to examine the spatial organization of these structures within the cell nucleus. Confocal microscopy and three-dimensional computer graphics reconstruction of optical series through infected cells indicated that viral DNA replication structures extend through the interior of the cell nucleus and appear to be spatially separate from the nuclear lamina. Examination of viral DNA replication structures in infected, binucleate cells showed similar or virtually identical patterns of DNA replication structures oriented along a twofold axis of symmetry between many of the sister nuclei. These results demonstrate that HSV DNA replication structures are organized in the interior of the nucleus and that their location is defined by preexisting host cell nuclear architecture, probably the internal nuclear matrix.  相似文献   

3.
Diurnality, associated with enhanced visual acuity and color vision, is typical of most modern Primates. However, it remains a matter of debate when and how many times primates re-acquired diurnality or returned to nocturnality. We analyzed the features specific to nocturnal and diurnal vision that were recently found in the nuclei of mammalian rod photoreceptor cells in 11 species representing various groups of the Primates and related tree shrew and colugo. In particular, heterochromatin in rod nuclei of nocturnal mammals is clustered in the center of rod nuclei (inverted architecture), whereas rods of diurnal mammals retain rods with peripheral heterochromatin (conventional architecture). Rod nuclei of the nocturnal owl monkey have a state transitional to the inverted one. Surprisingly, rod nuclei of the tarsier have a conventional nuclear architecture typical for diurnal mammals, strongly implying that recent Tarsiiformes returned to nocturnality from the diurnal state. Diurnal lemurs retain inverted rod nuclei typical of nocturnal mammals, which conforms to the notion that the ancestors of all Lemuroidea were nocturnal. Data on the expression of proteins indispensable for peripheral heterochromatin maintenance (and, respectively, conventional or inverted nuclear organization) in rod cells support the view that the primate ancestors were nocturnal and transition to diurnality occurred independently in several primate and related groups: Tupaia, diurnal lemurs, and, at least partially independently, in Simiiformes (monkeys and apes) and Tarsiiformes.  相似文献   

4.
Organisation of the cell nucleus is crucial for the regulation of gene expression but little is known about how nuclei are structured. To address this issue, we designed a genomic screen to identify factors involved in nuclear architecture in Saccharomyces cerevisiae. This screen is based on microscopic monitoring of nuclear pore complexes and nucleolar proteins fused with the green fluorescent protein in a collection of approximately 400 individual deletion mutants. Among the 12 genes identified by this screen, most affect both the nuclear envelope and the nucleolar morphology. Corresponding gene products are localised preferentially to the nucleus or close to the nuclear periphery. Interestingly, these nuclear morphology alterations were associated with chromatin-silencing defects. These genes provide a molecular context to explore the functional link between nuclear architecture and gene silencing.  相似文献   

5.
Nuclei are dynamic structures that move through the mitotic cell cycle, are involved in differentiation, and divide and fuse during reproduction. The DNA contents of nuclei from different plants vary by 2500-fold. The design and structure of nuclei is, therefore, both flexible and versatile. Features relating to genome, chromosome, and maybe even gene localization during interphase are now emerging. At the chromosomal level, studies of scaffold associations and DNA sequence organization are indicating structures that impose nuclear architecture.  相似文献   

6.
The mammalian sperm nucleus is characterized by unique properties that are important for fertilization. Sperm DNA retains only small numbers of histones in distinct positions, and the majority of the genome is protamine associated, which allows for extreme condensation and protection of the genetic material. Furthermore, sperm nuclei display a highly ordered architecture that is characterized by a centrally located chromocenter comprising the pericentromeric chromosome regions and peripherally positioned telomeres. Establishment of this unique and well-conserved nuclear organization during spermiogenesis is not well understood. Utilizing fluorescence in situ hybridization (FISH), we show that a large fraction of the histone-associated sperm genome is repetitive in nature, while a smaller fraction is associated with unique DNA sequences. Coordinated activity of poly(ADP-ribose) (PAR) polymerase and topoisomerase II beta has been shown to facilitate DNA relaxation and histone to protamine transition during spermatid condensation, and altered PAR metabolism is associated with an increase in sperm histone content. Combining FISH with three-dimensional laser scanning microscopy technology, we further show that altered PAR metabolism by genetic or pharmacological intervention leads to a disturbance of the overall sperm nuclear architecture with a lower degree of organization and condensation of the chromocenters formed by chromosomal pericentromeric heterochromatin.  相似文献   

7.
8.
There are several reports of a closer-than-random colocalization of homologous chromosomes in the vegetative nuclei of diploid budding yeast. Here, we studied by fluorescence in situ hybridization (FISH) the nuclear distribution of chromosomes and found a slight tendency toward closer proximity between homologous (allelic) loci than between any nonhomologous chromosomal regions. We show that most of this preferential association is not due to vegetative (also known as somatic) pairing but is caused by the polar orientation of interphase chromosomes (Rabl orientation). We quantified the occasional loss of detectable fluorescence signals that is inherent to the FISH method. Signal loss leads to the occurrence of a single signal that may be misinterpreted as the close association of two homologous chromosomal sites. The nuclear distribution of homologous loci, when corrected for the influence of nuclear architecture and methodological faults, was not different or was only marginally different from a random relative positioning as predicted by computer simulation. We discuss here several possibilities for the residual homologous proximity that do not invoke homology-dependent vegetative pairing, and we conclude that, in diploid budding yeast, constitutive vegetative pairing is a negligible factor for the organization of the interphase nucleus.  相似文献   

9.
DNA sequences occupy three-dimensional positions and their architecture is related to gene expression, gene-protein interactions and epigenetic processes. The recent analysis of chromosome 4 in Arabidopsis interphase nuclei reveals that gene-rich, undermethylated DNA is composed of active loops of 200 to 2000 kb associated with acetylated histones, providing a well-defined model system to study chromatin in its nuclear context.  相似文献   

10.
Three-dimensional structured illumination microscopy (3D-SIM) has opened up new possibilities to study nuclear architecture at the ultrastructural level down to the ~100 nm range. We present first results and assess the potential using 3D-SIM in combination with 3D fluorescence in situ hybridization (3D-FISH) for the topographical analysis of defined nuclear targets. Our study also deals with the concern that artifacts produced by FISH may counteract the gain in resolution. We address the topography of DAPI-stained DNA in nuclei before and after 3D-FISH, nuclear pores and the lamina, chromosome territories, chromatin domains, and individual gene loci. We also look at the replication patterns of chromocenters and the topographical relationship of Xist-RNA within the inactive X-territory. These examples demonstrate that an appropriately adapted 3D-FISH/3D-SIM approach preserves key characteristics of the nuclear ultrastructure and that the gain in information obtained by 3D-SIM yields new insights into the functional nuclear organization.  相似文献   

11.
12.
Chromatin organization within the nucleus is a vital regulator of genome function, yet its mechanical coupling to the nuclear architecture has remained elusive. To directly investigate this coupling, we locally modulated chromatin structure in living cells using nanoparticle-based laser perturbation. Unusual differences in the response of the cell nucleus were observed depending on the nuclear region that was perturbed--the heterochromatin, the euchromatin, and the nuclear envelope. This response varied under different conditions of cellular perturbations such as ATP depletion, apoptosis, and inhibition of histone deacetylases. Our studies implicate heterochromatin organization in imparting mechanical stability to the cell nucleus and suggest that nuclear size and shape are the result of interplay between nuclear and cytoplasmic anchors.  相似文献   

13.
14.
Crisp M  Burke B 《FEBS letters》2008,582(14):2023-2032
Initially perceived as little more than a container for the genome, our view of the nuclear envelope (NE) and its role in defining global nuclear architecture has evolved significantly in recent years. The recognition that certain human diseases arise from defects in NE components has provided new insight into its structural and regulatory functions. In particular, NE defects associated with striated muscle disease have been shown to cause structural perturbations not just of the nucleus itself but also of the cytoplasm. It is now becoming increasingly apparent that these two compartments display co-dependent mechanical properties. The identification of cytoskeletal binding complexes that localize to the NE now reveals a molecular framework that can seamlessly integrate nuclear and cytoplasmic architecture.  相似文献   

15.
Spatial organisation of the genome within the nucleus can play a role in maintaining the expressed or silent state of some genes [1]. There are distinct addresses for specific chromosomes, which have different functional characteristics, within the nuclei of dividing populations of human cells [2]. Here, we demonstrate that this level of nuclear architecture is altered in cells that have become either quiescent or senescent. Upon cell cycle exit, a gene-poor human chromosome moves from a location at the nuclear periphery to a more internal site in the nucleus, and changes its associations with nuclear substructures. The chromosome moves back toward the edge of the nucleus at a distinctive time after re-entry into the cell cycle. There is a 2-4 hour period at the beginning of G1 when the spatial organisation of these human chromosomes is established. Lastly, these experiments provide evidence that temporal control of DNA replication can be independent of spatial chromosome organisation. We conclude that the sub-nuclear organisation of chromosomes in quiescent or senescent mammalian somatic cells is fundamentally different from that in proliferating cells and that the spatial organisation of the genome is plastic.  相似文献   

16.
BACKGROUND: In comparison with many nuclear proteins, the movement of chromatin in nuclei appears to be generally constrained. These restrictions on motion are proposed to reflect the attachment of chromatin to immobile nuclear substructures. RESULTS: To gain insight into the regulation of chromosome dynamics by nuclear architecture, we have followed the movements of different sites in the human genome in living cells. Here, we show that loci at nucleoli or the nuclear periphery are significantly less mobile than other, more nucleoplasmic loci. Disruption of nucleoli increases the mobility of nucleolar-associated loci. CONCLUSIONS: This is the first report of distinct nuclear substructures constraining the movements of chromatin. These constraints reflect the physical attachment of chromatin to nuclear compartments or steric impairment caused by local ultrastructure. Our data suggest a role for the nucleolus and nuclear periphery in maintaining the three-dimensional organization of chromatin in the human nucleus.  相似文献   

17.

Background

The nuclear architecture of meiotic prophase spermatocytes is based on higher-order patterns of spatial associations among chromosomal domains from different bivalents. The meiotic nuclear architecture depends on the chromosome characteristics and consequently is prone to modification by chromosomal rearrangements. In this work, we consider Mus domesticus spermatocytes with diploid chromosome number 2n = 40, all telocentric, and investigate a possible modification of the ancestral nuclear architecture due to the emergence of derived Rb chromosomes, which may be present in the homozygous or heterozygous condition.

Results

In the 2n = 40 spermatocyte nuclei random associations mediated by pericentromeric heterochromatin among the 19 telocentric bivalents ocurr at the nuclear periphery. The observed frequency of associations among them, made distinguishable by specific probes and FISH, seems to be the same for pairs that may or may not form Rb chromosomes. In the homozygote Rb 2n = 24 spermatocytes, associations also mediated by pericentromeric heterochromatin occur mainly between the three telocentric or the eight metacentric bivalents themselves. In heterozygote Rb 2n = 32 spermatocytes all heterochromatin is localized at the nuclear periphery, yet associations are mainly observed among the three telocentric bivalents and between the asynaptic axes of the trivalents.

Conclusions

The Rb chromosomes pose sharp restrictions for interactions in the 2n = 24 and 2n = 32 spermatocytes, as compared to the ample possibilities for interactions between bivalents in the 2n = 40 spermatocytes. Undoubtedly the emergence of Rb chromosomes changes the ancestral nuclear architecture of 2n = 40 spermatocytes since they establish new types of interactions among chromosomal domains, particularly through centromeric and heterochromatic regions at the nuclear periphery among telocentric and at the nuclear center among Rb metacentric ones.  相似文献   

18.
Cancer is diagnosed by examining the architectural alterations to cells and tissues. Changes in nuclear structure are among the most universal of these and include increases in nuclear size, deformities in nuclear shape, and changes in the internal organization of the nucleus. These may all reflect changes in the nuclear matrix, a non-chromatin nuclear scaffolding determining nuclear form, higher order chromatin folding, and the spatial organization of nucleic acid metabolism. Malignancy-induced changes in this structure may have profound effects on chromatin folding, on the fidelity of genome replication, and on gene expression. Elucidating the mechanisms and the biological consequences of nuclear changes will require the identification of the major structural molecules of the internal nuclear matrix and an understanding of their assembly into structural elements. If biochemical correlates to malignant alterations in nuclear structure can be identified then nuclear matrix proteins and, perhaps nuclear matrix-associated structural RNAs, may be an attractive set of diagnostic markers and therapeutic targets. J. Cell. Biochem. 70:172–180, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
The genus Plasmodium is a unicellular eukaryotic parasite that is the causative agent of malaria, which is transmitted by Anopheline mosquito. There are a total of three developmental stages in the production of haploid parasites in the Plasmodium life cycle: the oocyst stage in mosquitoes and the liver and blood stages in mammalian hosts. The Plasmodium oocyst stage plays an important role in the production of the first generation of haploid parasites. Nuclear division is the most important event that occurs during the proliferation of all eukaryotes. However, obtaining the details of nuclear division at the oocyst stage is challenging owing to difficulties in preparation. In this study, we used focused-ion-beam-milling combined with scanning-electron-microscopy to report the 3D architecture during nuclear segregations in oocyst stage. This advanced technology allowed us to analyse the 3D details of organelle segregation inside the oocyst during sporogony formation. It was revealed that multiple nuclei were involved with several centrosomes in one germ nucleus during sporozoite budding (endopolygeny). Our high-resolution 3D analysis uncovered the endopolygeny-like nuclear architecture of Plasmodium in the definitive host. This nuclear segregation was different from that in the blood stage, and its similarity to other apicomplexan parasite nuclear divisions such as Sarcocystis is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号