首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of suitable strategy to overcome genotypic limitations of in vitro regeneration in sorghum would help utilize high yielding but poor tissue culture responsive genotypes in genetic manipulation programmes. A factorial experiment was conducted with two explants (immature embryos and inflorescences), eight genotypes (five Sorghum sudanense and three Sorghum bicolor genotypes), three levels of 2,4-D (1 mg l−1, 3 mg l−1, and 5 mg l−1), and two levels of kinetin (0.0 mg l−1 and 0.5 mg l−1). The induced callus was transferred to the regeneration media with factorial combinations of IAA (1.0 mg l−1 and 2.0 mg l−1) and kinetin (0.5 mg l−1 and 1.0 mg l−1). S. sudanense regenerated at significantly higher frequency (38.91%) and produced shoots more intensely (2.2 shoots/callus) than S. bicolor (26.93%, 1.26 shoots/callus). Immature inflorescences regenerated at a much higher frequency (46.48%) and produced significantly more number of shoots (2.71 shoots/callus) than immature embryos (22.35%, 0.99 shoots/callus). Moreover, differences for plant regeneration between genotypes of the same species were minimal when using immature inflorescences. Increase in the 2,4-D concentration in callus induction media exhibited inhibitory effect on callus induction, growth, shoot induction and number of shoots/callus but inclusion of kinetin in callus induction media improved these responses. Use of immature inflorescence explant and inclusion of kinetin in callus induction media could overcome genotypic limitations of plant regeneration to a large extent. The extent of variability, heritability and expected genetic advance was more in plant regeneration traits than in callus induction traits. This indicated that the variability in respect of these attributes in the genotypes may be due to the additive gene action and selection of genotypes for these characters would be rewarding.  相似文献   

2.
3.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

4.
Improvement on rice plant regeneration system from an embryogenic callus using two Malaysian indica rice MR 219 and MR 232 was developed in this study. Different stages of rice explants (zygotic embryos) were tested for callus induction and regeneration using various carbon sources and amino acids. The present study shows that dough stage of zygotic embryos was the best stage of explants for the embryogenic callus induction and regeneration of both rice cultivars. The embryogenic callus nature with the compact structure was confirmed by scanning electron microscopy (SEM) analysis. Inclusion of maltose at the concentration between 10 and 20 mg/L shown higher responsive for the development of green somatic embryos and initiation of rice regeneration with an average of 29–37 (87–91%) regenerated plantlets, respectively. All in vitro regenerated rice plantlets were green, morphological and physiologically healthy condition. Rice plantlets were hardened in acclimatization room for 3 weeks and later transferred into soil with 95% survival in both varieties were recorded. Hence, regeneration system from zygotic rice embryos via somatic embryogenesis system was carried out successfully by using 10 g/L of maltose and combinations of glutamine, asparagine and arginine amino acids.  相似文献   

5.
Summary We have established embryogenic cell suspension cultures of barley (Hordeum vulgare L. cultivars Igri, Gimpel, Princesse, and Baronesse) from anther-derived embryogenic callus. Suspension cultures of cultivars Igri and Gimpel were regenerable. The most successful cultivar was Igri, from which a number of independent cell lines producing plantlets were established. Plants could be transferred to soil; up to now, 50% of more than 200 regenerated plants were morphologically normal and fertile. The relative frequency of sterile plants increased as suspensions aged. Suspensions older than 1 year produced embryogenic callus but only albino plantlets could be regenerated.  相似文献   

6.
Carbenicillin, a well-known antibiotic, has been reported to have growth regulator-like activity in vitro for some plant species. In the present paper we add horseradish (Armoracia rusticana) to the list of plants exhibiting such responses. This project began as an effort to eliminate latent bacterial contamination among established in vitro horseradish plants. Carbenicillin (100 mg L−1) added to regeneration medium eliminated all visible bacterial contaminants. Unexpectedly, carbenicillin-grown explants regenerated adventitious shoots faster (14 days) than those on control medium (21 days). In addition eight of 11 horseradish cultivars grown on carbenicillin produced more adventitious shoots per explant than control. At much higher levels (2,000 mg L−1) carbenicillin was found to retard somatic embryogenic callus induction. Based on these observations we suggest that carbenicillin at moderate levels enhances shoot development in horseradish. The mode of action of carbenicillin’s growth regulator-like activity needs to be investigated.  相似文献   

7.
A protocol for in vitro regeneration via indirect organogenesis for Phaseolus vulgaris cv. Negro Jamapa was established. The explants used were apical meristems and cotyledonary nodes dissected from the embryonic axes of germinating seeds. Several auxin/cytokinin combinations were tested for callus induction. The best callus production was obtained with medium containing 1.5 μM 2,4-dichlorophenoxyacetic acid. After 2 weeks of growth calli were transferred to shooting medium containing 22.2 μM 6-benzylaminopurine. Shoots regenerated with a frequency of approximately 0.5 shoots per callus, and upon transfer to rooting medium these shoots produced roots with 100% efficiency. Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Greenhouse grown regenerated plants showed normal development and were fertile. The protocol was reproducible for other nine P. vulgaris cultivars tested, suggesting a genotype independent procedure.  相似文献   

8.
Summary Immature embryos, inflorescences, and anthers of eight commercial cultivars of Triticum aestivum (wheat) formed embryogenic callus on a variety of media. Immature embryos (1.0–1.5 mm long) were found to be most suitable for embryogenic callus formation while anthers responded poorly; inflorescences gave intermediate values. Immature embryos of various cultivars showed significant differences in callus formation in response to 11 of the 12 media tested. No significant differences were observed when the embryos were cultred under similar conditions on MS medium with twice the concentration of inorganic salts, supplemented with 2,4-D, casein hydrolysate and glutamine. Furthermore, with inflorescences also no significant differences were observed. Explants on callus formation media formed two types of embryogenic calli: an off-white, compact, and nodular callus and a white compact callus. Upon successive subcultures (approximately 5 months), the nodular embryogenic callus became more prominent and was identified as aged callus. The aged callus upon further subculture, formed an off-white, soft, and friable embryogenic callus. Both the aged and friable calli maintained their embryogenic capacity over many subculture passages (to date up to 19 months). All embryogenic calli (1 month old) from the different callus-forming media, irrespective of expiant source, formed only green shoots on regeneration media that developed to maturity in the greenhouse. There were no significant differences in the response of calli derived from embryos and inflorescences cultured on the different initiation media. Also, the shoot-forming capacity of the cultivars was not significantly different. Anther-derived calli formed the least shoots. Aged and friable calli on regeneration media also formed green shoots but at lower frequencies. Plants from long-term culture have also been grown to maturity in soil.Florida Agricultural Experiment Station Journal Series No. R-00494  相似文献   

9.

The roots and shoots of Gentiana kurroo Royle are rich sources of gentiopicroside (GPD). The plant is used traditionally for curing many metabolic diseases. The exploitation of G. kurroo in its native habitat has placed the plant on the critically endangered list of plants in India. One of the ways of creating an alternative source of G. kurroo is through in vitro propagation. Although a number of in vitro propagation methods for G. kurroo exist, there are no studies that have optimized methods for rapid in vitro shoot production and the production of GPD. The objective of this study was to develop an effective in vitro shoot multiplication system of G. kurroo. Furthermore, the influence of solid and liquid induction media were investigated. Shoots were regenerated from embryogenic callus and transferred to solid and liquid Murashige and Skoog (MS) and Gamborg (B5) media fortified with various concentrations of BA containing different auxins. It was observed that the liquid medium produced a higher number of shoots than the solid media. MS supplemented with BA (2 mg/L) and IAA (0.5 mg/L) produced?~?5.58 shoots per explant on the solid medium, while?~?16 shoots per explant was obtained in the liquid medium. High-Performance Liquid Chromatography (HPLC) analysis of in vitro shoots grown in the liquid medium produced 9.13 mg/g dry weight (DW) of GPD which is seven-fold higher than that of naturally growing plant shoots. The in vitro protocol for G. kurroo developed in this study may be used for industrial production of GPD.

  相似文献   

10.
Brachiaria brizantha (syn. Urochloa brizantha) is an important tropical forage grass widely cultivated in Brazil. In order to optimize tissue culture conditions for B. brizantha, in vitro culture of mature seeds, basal segments and leaf segments from in vitro plants of an apomictic and a sexual genotype of B. brizantha was performed. When cultured on different media, leaf segments yielded non-embryogenic calluses which formed several roots. Friable calluses from mature seeds and basal segments explants incubated on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine yielded 80% compact and nodular embryogenic structures. Calluses with such compact embryogenic structures were highly regenerable upon transfer to medium supplemented with kinetin and naphthalene acetic acid. They produced isolated somatic embryos, multiple fused scutelli or isolated scutellum with polyembryos that germinated into isolated or multiple shoots. Green and morphologically normal plants were obtained for the two genotypes. Changing the media from pH 5.8 to pH 4.0 increased the number of explants that formed calluses as well as the number of shoots per explant. When embryogenic calluses from mature seeds were successively sub-cultured for 4 months, aiming at repetitive somatic embryogenesis, all the regenerated plants were albinos. The embryogenic nature of the compact structure was confirmed by scanning electron microscopy.  相似文献   

11.
The compound 2,4-Dicholorophenoxyacetic acid (2,4-D) is an important growth regulator which is used in the majority of embryogenic cell and tissue culture systems. However, 2,4-D also appears to have a negative effect on growth and development of plant tissues and organs cultured in vitro. For example, 2,4-D exerts inhibition on in vitro somatic embryo initiation and/or development of most citrus species. To understand the molecular mechanism by which 2,4-D inhibits somatic embryogenesis (SE), proteomic changes of Valencia sweet orange (Citrus sinensis) embryogenic callus induced by treatments with a high concentration of 2,4-D (6 mg l−1) was investigated. Nine 2,4-D-responsive proteins were identified, of which eight were up-regulated and one was down-regulated. Interestingly, three of the eight up-regulated proteins were osmotic stress-associated, suggesting that 2,4-D induced osmotic stress in Valencia embryogenic callus. This speculation was supported by results from our physiological studies: 2,4-D treated callus cells exhibited increased cytoplasm concentration with a significant reduction in relative water content (RWC) and an obvious increase in levels of two osmolytes (proline and soluble sugar). Taken together, our results suggested that 2,4-D could inhibit somatic embryo initiation by, at least in part, inducing osmotic stress to citrus callus cells.  相似文献   

12.
Different explant materials were treated with antimitotic agents to induce chromosome doubling in several Miscanthus sinensis clones. In vitro propagated plants established in soil, in vitro shoots, embryogenic callus, shoot apices and leaf explants were treated with different concentrations of colchicine or oryzalin. No tetraploids were obtained after antimitotic treatment of plants established in soil. The percentage of chromosome doubled plants after antimitotic treatment of single in vitro shoots was genotype dependent. Rooted in vitro plantlets were not a suitable target for antimitotic treatment, due to a high frequency of ploidy chimeras. Many tetraploid plants were regenerated after antimitotic treatment at the callus and explant level, but the efficiency was genotype dependent, primarily due to differences in the ability to form regenerable callus and to regenerate plants from embryogenic callus. Treatment of shoot apices with colchicine was the most efficient and reproducible system in the four genotypes tested. It was possible to repeatedly use the same colchicine-containing medium without any reduction in the induction of regenerable callus or in the percentage of tetraploids, thereby minimising the handling of this very toxic compound.  相似文献   

13.
The effects of different factors on the embryogenesis and plant regeneration from mature embryos of Russian spring and winter genotypes were studied. Embryogenic callus induction was achieved on MS medium supplemented with different concentrations of 2,4-D (2,4-dichlorophenoxyacetic acid), 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) or Dicamba (3,6-dichloro-o-anisic acid). Although all auxins were able to induce callus from explants with high frequency (98–100%), Dicamba was more effective for the induction of embryogenic callus (21.8–38.3%). Maximum embryogenic callus formation and high number of regenerated plants were observed at 12 mg l−1 of Dicamba. The time exposure to Dicamba (7, 14, 21 and 28 days) had a significant effect on efficiency of somatic embryogenesis. When contact of explants with callus induction medium was increased from 7 to 21 days the rate of somatic embryogenesis and number of regenerated plants per embryogenic callus gradually increased from 13.0 to 38.4% and 3.6 to 8.0%, respectively. Supplement of additional auxins (indoleacetic acid (IAA), indolebutyric acid (IBA), and naphthaleneacetic acid (NAA)) to callus induction medium with Dicamba had a positive effect on the rate of embryogenic callus formation, while the average number of regenerated shoots was not affected. The best rate of somatic embryogenesis was observed at the addition of 0.5 mg l−1 IAA with Dicamba (61.0%). The optimum combination of Dicamba and IAA increased the efficiency of somatic embryogenesis and plant regeneration from seven spring and winter wheat genotypes, thought overall morphogenic capacity was still genotype dependent.  相似文献   

14.
Summary A cytological study has been made of plants regenerated from cultured immature embryos of four wheat cultivars (Triticum aestivum, 2n = 6x = 42). In total, 29% of the 192 plants examined were aneuploid with a range in chromosome numbers of 38–45. Evidence of chromosome structural changes was also found. This variation occurred in regenerants of all four cultivars, but there were large differences in the proportions of aneuploids arising from individual cultures which meant that no significant differences could be demonstrated between cultivars. Chromosome abnormalities were present in plants regenerated both from embryogenic cultures and from cultures in which the origin of shoots could not be distinctly defined.  相似文献   

15.
Summary Friable embryogenic callus and somatic embryos of 4 Gladiolus cultivars were obtained on Murashige and Skoog (MS) medium with various concentration of auxins from the following explants: corm slices, young leaf bases and whole, intact plantlets. Somatic embryos transferred on MS hormone-free medium regenerated into plantlets. All plantlets obtained through embryogenesis did not differ phenotypically from the parental clones. The embryogenic friable callus has been maintained for over 2 years in culture and has retained a very high regeneration capacity.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - KIN kinetin - NAA naphthaleneacetic acid - MS Murashige and Skoog Medium (1962) - E embryogenic callus - NE non-embryogenic callus  相似文献   

16.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

17.
Solanum nigrum is a newly discovered Cd-hyperaccumulator. In the present study, the protective effects of proline against cadmium toxicity of callus and regenerated shoots of S. nigrum are investigated based on a high frequency in vitro shoot regeneration system. Proline pretreatment reduces the reactive oxygen species levels and protects the plasma membrane integrity of callus under cadmium stress, and therefore improves the cadmium tolerance in S. nigrum. Inductively coupled plasma mass spectroscopy analysis shows that exogenous proline increases the cadmium accumulation in callus and regenerated shoots of S. nigrum. Further analysis indicates that the improvement of cadmium tolerance caused by proline pretreatment is correlated with an increase of superoxide dismutase and catalase activity and intracellular total glutathione content. The interaction between proline and enzymic or non-enzymic antioxidants is discussed.  相似文献   

18.
Addition of the ethylene antagonist, silver nitrate (AgNO3), into callus induction medium significantly enhanced embryogenic callus production (both induction frequency and callus growth) of field-collected male immature inflorescence cultures of buffalograss NE84-45-3 and 'Texoka'. No stimulatory effect of AgNO3 was observed on embryogenic callus induction for female immature inflorescence culture of a female genotype `609' and `Texoka'. Calli initiated on AgNO3-containing media had more shoot-regenerating calli than those initiated on AgNO3-free media, when they were transferred to the regeneration media. Benzyladenine at 2.2 μM gave the best response for regeneration, regardless of the callus source. Although average number of shoots regenerated per callus was lower for calli initiated on AgNO3-containing media, total number of shoots regenerated was higher. The stimulatory effect, however, was environment and genotype dependent. While the addition of AgNO3 significantly stimulated embryogenic callus induction of NE84-45-3 immature inflorescences collected in Fall 1995 and May 1997, it only slightly increased the embryogenic callus induction frequencies in May 1996 when rainy conditions occurred. For male inflorescences of `Texoka' collected in early May, AgNO3 significantly enhanced embryogenic callus production consistently over the two-year period (1996, 1997). Published as Journal Series No. 1351, Agricultural Research Division, University of Nebraska. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The endangered Chilean tree Gomortega keule (Mol.) Baillon produces edible fruit, making it a potential crop. However, its cultivation from seed or cuttings is extremely difficult. This paper reports the induction of somatic embryogenesis and the initiation of liquid cultures in this species. Callus was induced from zygotic embryos and field-collected shoots. Somatic embryogenesis on zygotic embryos occurred at a low frequency. Induction of somatic embryogenesis was accomplished on micropropagated shoots after 6.5 months on semi-solid Murashige and Skoog (MS) medium with 30 g/l sucrose, 1.0 mg/l 2,4-dichlorophenoxyacetic acid and 1.0 mg/l 6-(γ,γ-dimethylallylamino) purine (2iP). Liquid cultures of compact callus and small aggregates were obtained and showed optimum proliferation in MS medium with 20 g/l sucrose, 0.01 mg/l α-naphthaleneacetic acid and 0.1 mg/l 2iP. The proliferation of friable embryogenic callus was observed in liquid medium and will allow the propagation of selected genotypes of this tree on a large scale. Genetic variation in two embryogenic genotypes cultured in vitro was not detected in an assessment using microsatellites; this approach is suitable for tracing genotypes.  相似文献   

20.
A novel protocol for indirect shoot organogenesis of Dieffenbachia cv. Camouflage was established using leaf explants excised from in vitro shoot cultures. The frequency of callus formation reached 96% for explants cultured on Murashige and Skoog (1962) basal medium supplemented with 5 μM thidiazuron and 1 μM 2,4-dichlorophenozyacetic acid. The number of shoots regenerated was high, with up to 7.9 shoots produced per callus cultured on basal medium supplemented with 40 μM N 6-(Δ2-isopentenyl)adenine and 2 μM indole-3-acetic acid. Regenerated shoots rooted well in a soilless substrate, acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions. Somaclonal variations in leaf variegation, color, and morphology have been observed in regenerated plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号