首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf expansion rate varies with leaf temperature, photon flux density (PPFD), evaporative demand and soil water status. In most simulation models, it is calculated every day by multiplying the amount of carbohydrate available to leaves by specific leaf area (SLA). However, leaf expansion rate is considerably reduced by mild water deficits which do not affect photosynthesis, and is not affected by a reduction in the PPFD intercepted during rapid leaf expansion. Specific leaf area undergoes a several-fold variability depending on PPFD, soil water status and time of day. It is increased when environmental conditions have a greater depressive effect on expansion rate than on photosynthesis, and is decreased in the opposite case. It is therefore appropriate to model leaf expansion independently of the plant carbon budget. Consistent characteristics can be deduced from a series of experiments, allowing a model of leaf expansion to be proposed. (i) Time courses of relative leaf expansion rate and of epidermal cell division rate are well conserved within a plant and across a large range of environmental conditions, provided that durations and rates are expressed in thermal time. Maximum relative rates are common to all zones of a leaf and to all leaves of a plant, in maize and sunflower. (ii) A water deficit, or a reduction in intercepted PPFD, imposed in the first half of the period of leaf development affects the relative expansion rate in the deficit only, but permanently affects the absolute expansion rate. In contrast, a reduction in PPFD causes no effect on leaf expansion if imposed in the rapid expansion period when the leaf is autotrophic. (iii) Expansion rate is related to evaporative demand and to the concentration of ABA in the xylem sap with relationships that apply under both field and laboratory conditions. (iv) Tissue expansion and epidermal cell division behave as independent processes which determine epidermal cell area at each time.  相似文献   

2.
The opportunity to trace the evolution of a triplet repeat is rare, especially for seed-plant lineages with a well-defined fossil record. Microsatellite PtTX2133 sequences from 18 species in 2 conifer genera were used to calibrate the birth of a CAGn repeat, from its protomicrosatellite origins to its repeat expansion. Birth occurred in the hard-pine genome ~ 136 million years ago, or 14 million generations ago, then expanded as a polymorphic triplet repeat 136-100 million years before a major North American vicariance event. Calibration of the triplet-repeat birth and expansion is supported by the shared allelic lineages among Old and New World hard pines and the shared alleles solely among North American diploxylon or hard pines. Five CAGn repeat units appeared to be the expansion threshold for Old and New World diploxylon pines. Haploxylon pine species worldwide did not undergo birth and repeat expansion, remaining monomorphic, with a single imperfect 198-bp allele. A sister genus, Picea, had only a region of cryptic simplicity, preceding a proto-microsatellite region. The polymorphic triplet repeat in hard pines is older than some long-lived microsatellites reported for reptiles, yet younger than those reported for insects. Some cautionary points are raised about phylogenetic applications for this long-lived microsatellite.  相似文献   

3.
Historically, tissue expansion is a prolonged process, typically requiring at least 6 weeks to complete. Recently, interest has increased in shortening this time period. In the current study, a continuous infusion device maintaining constant expander pressure less than capillary filling pressure was used in a canine model in seven dogs to minimize the time period needed to achieve significant expansion. There were no complications, except one device malfunction, corrected by changes in design. The process was shown to be a safe and effective means of producing amounts of expansion similar to traditional methods in approximately 72 hours, with expansion of 28 percent (n = 6) for continuous tissue expansion (CTE) versus 34 percent (n = 6) for a 2-week rapid expansion protocol. This expansion was derived from either stretch of preexisting tissue (46 percent for CTE, 35 percent for 2-week expansion) or recruitment of adjacent tissue. The clinical application of continuous tissue expansion could permit the advantages of tissue expansion to be obtained in many more situations than are currently available to traditional tissue expansion techniques.  相似文献   

4.
基于个体的空间显性模型和遥感技术,以互花米草为例,模拟了自1997到2010年的种群扩张动态,揭示了土地利用变化与潮间带高程的影响;并通过全局敏感性分析揭示了种子扩散、成体存活率、有性和无性繁殖等种群统计学特征对互花米草种群扩张的相对重要性。研究结果发现:1)有性繁殖与无性繁殖共同决定互花米草种群快速扩张;2)潮间带高程和土地利用变化显著影响模型预测的精度,对互花米草种群扩张有非常重要的影响;3)成体存活率与种子长距离扩散是影响互花米草种群扩张速度最重要的因素;无性繁殖比有性繁殖对种群扩张的影响更大;种子长距离扩散比本地扩散更为重要,同时,小概率的种子长距离扩散事件对种群扩张有非常重要的影响。为了经济有效地控制外来入侵植物的扩张,应该抑制种子的长距离扩散和移除种子长距离扩散形成的位于入侵前沿的小斑块。  相似文献   

5.
The Wiener method of nonlinear system identification is extended to systems with a Markov chain input. Multivariate functionals are constructed that are orthonormal with respect to the probability measure of the Markov input. Any system operating on a Markov chain may be represented by an orthogonal expansion in these functionals. The coefficients of the orthogonal expansion may be evaluated by crosscorrelation. Application of this technique to nonlinear neural systems with a Markov actionpotential input are discussed.  相似文献   

6.
The chemical potential and Gibbs free energy of ion clusters are obtained by Monte Carlo method combined with a cluster expansion in a wide range of pressures. Gibbs free energy and configurational energy of the symmetric ion plasma is calculated by Frenkel-Band cluster expansion. The energy is compared with Monte Carlo data for a periodic system.  相似文献   

7.
In dicotyledons, biomass predominantly represents cell-wall material of xylem, which is formed during the genetically poorly characterized secondary growth of the vasculature. In Arabidopsis hypocotyls, initially proportional secondary growth of all tissues is followed by a phase of xylem expansion and fiber differentiation. The factors that control this transition are unknown. We observed natural variation in Arabidopsis hypocotyl secondary growth and its coordination with root secondary growth. Quantitative trait loci (QTL) analyses of a recombinant inbred line (RIL) population demonstrated separate genetic control of developmentally synchronized secondary-growth parameters. However, major QTL for xylem expansion and fiber differentiation correlated tightly and coincided with major flowering time QTL. Correlation between xylem expansion and flowering was confirmed in another RIL population and also found across Arabidopsis accessions. Gene-expression analyses suggest that xylem expansion is initiated after flowering induction but before inflorescence emergence. Consistent with this idea, transient activation of an inducer of flowering at the rosette stage promoted xylem expansion. Although the shoot was needed to trigger xylem expansion and can control it in a graft-transmissible fashion, the inflorescence stem was not required to sustain it. Collectively, our results suggest that flowering induction is the condition for xylem expansion in hypocotyl and root secondary growth.  相似文献   

8.
Ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) is a promising approach to improve insufficient engraftment after umbilical cord blood stem cell transplantation (UCB-SCT). Although culturing HSPC with hematopoietic cytokines results in robust proliferation, it is accompanied with extensive differentiation and loss of self-renewal capacity. Wnt signaling has been implicated in regulating HSPC fate decisions in vivo and in promoting HSPC self-renewal by inhibition of differentiation, but the effects of Wnt on the ex vivo expansion of HSPC are controversial. Here, we demonstrate that exogenous Wnt3a protein suppresses rather than promotes the expansion of UCB-derived CD34+ cells in serum free expansion cultures. The reduced expansion was also observed in cultures initiated with Lin-CD34+CD38lowCD45RA-CD90+ cells which are highly enriched in HSC and was also observed in response to activation of beta-catenin signaling by GSK3 inhibition. The presence of Wnt3a protein during the culture reduced the frequency of multilineage CFU-GEMM and the long-term repopulation ability of the expanded HSPC. These data suggest that Wnt signaling reduces expansion of human HSPC in growth factor-driven expansion cultures by promoting differentiation of HSPC.  相似文献   

9.
A model to explain the mutational process and population dynamics of the fragile X syndrome is presented. The mutational mechanism was assumed to be a multipathway, multistep process. Expansion of CGG repeats was based on an underlying biological process and was assumed to occur at two time points: meiosis and early embryonic development (mitosis). Meiotic expansion was assumed to occur equally in oogenesis and spermatogenesis, while mitotic expansion was restricted to somatic, or constitutional, alleles of maternal origin. Testable hypotheses were predicted by this meiotic/mitotic model. First, parental origin of mutation is predicted to be associated with the risk of a woman to have a full mutation child. Second, "contractions" seen in premutation male transmissions are predicted not to be true contractions in repeat size, but a consequence of the lack of mitotic expansion in paternally derived alleles. Third, a portion of full-mutation males should have full-mutation alleles in their sperm, due to the lack of complete selection against the full-mutation female. Fourth, a specific premutation-allele frequency distribution is predicted and differs from that based on models assuming only meiotic expansion. Last, it is predicted that approximately 65 generations are required to achieve equilibrium, but this depends greatly on the expansion probabilities.  相似文献   

10.
We have investigated the configuration and the stability of a single membrane pore bound by four melittin molecules and embedded in a fully hydrated bilayer lipid membrane. We used molecular dynamics simulations up to 5.8 ns. It is found that the initial tetrameric configuration decays with increasing time into a stable trimer and one monomer. This continuous transformation is accompanied by a lateral expansion of the aqueous pore exhibiting a final size comparable to experimental findings. The expansion-induced formation of an interface between the pore-lining acyl chains of the lipids and the pore water ("hydrophobic pore") is transformed into an energetically more favorable toroidal pore structure where some lipid heads are translocated from the rim to the central part of the interface ("hydrophilic pore"). The expansion of the pore is supported by the electrostatic repulsion among the alpha-helices. It is hypothesized that pore growth, and hence cell lysis, is induced by a melittin-mediated line tension of the pore.  相似文献   

11.
Upper Triassic vicariance that spans the Pacific involving terrestrial biotas in south east Asia/south western North America and Queensland/Chile/Argentina is sum- marized. These terrestrial and freshwater organisms did not migrate via high-latitude landbridges or across ocean barriers or Pangaea, are endemic to these vicariant fragments, and are mostly identical species. Rejoining the vicariant fragments is compatible with rapid earth expansion but is incompatible with other geological theories that call upon Panthalassa, Pacifica, displaced terranes and slow earth expansion. Vicariance biogeography yields a rigorous test of these models since its data are derived entirely independently of them. The Upper Triassic time-frame was selected because it immediately preceded the break-up of Pangaea.  相似文献   

12.
Spores of the fern, Onoclea sensihilis L., suffer a disruption of normal development when they are cultured on media containing colchicine. Cell division is inhibited, and the spores develop into giant spherical cells under continuous white fluorescent light. In darkness only slight cell expansion occurs. Spherical cell expansion in the light requires continuous irradiation. Photosynthesis does not seem to be involved, since variations in light intensity do not affect the final cell diameter; the addition of sucrose to the medium does not permit cell expansion in darkness; and the inhibitor DCMU does not block the light-induced cell expansion. Continuous irradiation of colchicine-treated spores with blue, red or far-red light produces different patterns of cell expansion. Blue light permits spherical growth, similar to that found under white light, whereas red and far-red light promote the reestablishment of polarized filamentous growth. Although ethylene is unable to induce polarized cell expansion in colchicine-treated spores in darkness or white and blue light, it enhances filamentous growth which already is established by red or far-red irradiation. Both red and far-red light increase the elongation of normal filaments (untreated with colchicine) above that of dark-grown plants, but under all 3 conditions the rates of volume growth are identical. Light, however, does cause a decrease in the cell diameters of irradiated filaments. These data are used to construct an hypothesis to explain the promotion of cell elongation in fern protonemata by red and far-red light. The model proposes light-mediated changes in microtubular orientation and cell wall structure which lead to restriction of lateral cell expansion and enhanced elongation growth.  相似文献   

13.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs.  相似文献   

14.
Approximate Bayesian computation (ABC) is a highly flexible technique that allows the estimation of parameters under demographic models that are too complex to be handled by full-likelihood methods. We assess the utility of this method to estimate the parameters of range expansion in a two-dimensional stepping-stone model, using samples from either a single deme or multiple demes. A minor modification to the ABC procedure is introduced, which leads to an improvement in the accuracy of estimation. The method is then used to estimate the expansion time and migration rates for five natural common vole populations in Switzerland typed for a sex-linked marker and a nuclear marker. Estimates based on both markers suggest that expansion occurred <10,000 years ago, after the most recent glaciation, and that migration rates are strongly male biased.  相似文献   

15.
The expansion of a CAG trinucleotide repeat (TNR) sequence has been linked to several neurological disorders, for example, Huntington's disease (HD). In HD, healthy individuals have 5-35 CAG repeats. Those with 36-39 repeats have the premutation allele, which is known to be prone to expansion. In the disease state, greater than 40 repeats are present. Interestingly, the formation of non-B DNA conformations by the TNR sequence is proposed to contribute to the expansion. Here we provide the first structural and thermodynamic analysis of a premutation length TNR sequence. Using chemical probes of nucleobase accessibility, we found that similar to (CAG)(10), the premutation length sequence (CAG)(36) forms a stem-loop hairpin and contains a hot spot for DNA damage. Additionally, calorimetric analysis of a series of (CAG)(n) sequences, that includes repeat tracts in both the healthy and premutation ranges, reveal that thermodynamic stability increases linearly with the number of repeats. Based on these data, we propose that while non-B conformations can be formed by TNR tracts found in both the healthy and premutation allele, only sequences containing at least 36 repeats have sufficient thermodynamic stability to contribute to expansion.  相似文献   

16.
In species undergoing range expansion, newly established populations are often more dispersive than older populations. Because dispersal phenotypes are complex and often costly, it is unclear how highly dispersive phenotypes are maintained in a species to enable their rapid expression during periods of range expansion. Here I test the idea that metapopulation dynamics of local extinction and recolonization maintain distinct dispersal strategies outside the context of range expansion. Western bluebirds display distinct dispersal phenotypes where aggressive males are more dispersive than nonaggressive males, resulting in highly aggressive populations at the edge of their expanding range. I experimentally created new habitat interior to the range edge to show that, as on the range front, it was colonized solely by aggressive males. Moreover, fitness consequences of aggression depended on population age: aggressive males had high fitness when colonizing new populations, while nonaggressive males performed best in an older population. These results suggest that distinct dispersal strategies were maintained before range expansion as an adaptation for the continual recolonization of new habitat. These results emphasize similarities between range expansion and metapopulation dynamics and suggest that preexisting adaptive dispersal strategies may explain rapid changes in dispersal phenotypes during range expansion.  相似文献   

17.
SARGENT  CAROLINE 《Annals of botany》1976,40(2):355-359
A study of the formation of cuticle in Libertia elegans hasshown that the cuticle develops centripetally and is producedcontinuously at its juncture with the underlying pectic layer.Peroxidase activity may be demonstrated in this region duringdevelopment. Growth occurs in two discrete phases; initiallywhilst the underlying epidermal cells are expanding and laterwhen such expansion is complete. The phases are morphologicallydistinct and it is proposed that the terms primary and secondarybe applied to them. Cuticular channels with a pit-like appearancein T.S. are described here for the first time as is the fissuringand active replacement of inelastic secondary cuticular materialto accommodate costal expansion and the growth of papillae.  相似文献   

18.
Ma N  Xue J  Li Y  Liu X  Dai F  Jia W  Luo Y  Gao J 《Plant physiology》2008,148(2):894-907
  相似文献   

19.
The goal of this study was to contribute to an understanding of how much expansion force is needed during a maxillary expansion (ME) and where bony reaction takes place. A finite element (FE) model of a dry human male skull was generated from CT scans. The FE model, which consists of cortical and cancellous bone and teeth, was loaded with the same force magnitudes, directions and working points as in rapid maxillary expansion (RME). A three-dimensional finite element stress analysis (FESA) of the forces and displacement was performed. The highest stress was observed in the maxilla in the region where the forces were applied, and spreads more or less throughout almost the whole frontal skull structures. The displacement distribution which causes stress in the skull is highly dependant on the thickness of the bone and its structure. All areas with high compressive and tensile stress are exactly the regions which determine the maximal amount of force to be used during the maxillary expansion and should be examined in case of any complication during a patient's treatment. Regions with significant compressive and tensile stress are the regions observed to have an increase in cellular activity. Further simulations with a given displacement (0.5mm) showed that displacement simulations need extra caution otherwise they will lead to very high forces which are not realistic in an orthodontic treatment.  相似文献   

20.
Nonequilibrium molecular dynamics (NEMD) computer simulations are used to calculated the bulk modulus for a dimyristoylphosphatidylcholine bilayer. A methodology is developed whereby NEMD can be effectively used to calculate material properties for complex systems that undergo long time-scale conformational changes. It is found that the bulk modulus upon expansion from a zero stress state agrees well with experimental estimates. However, it is also found that the modulus upon contraction from a zero stress state is larger. From a molecular perspective, it is possible to explain this phenomena by examining the molecular origins of the pressure response. The finding that the two moduli are not equal upon compression and expansion is in apparent contradiction to osmotic stress experiments where the area modulus was found to be the same upon expansion and contraction. This issue is addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号