首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial membranes were incubated with NN'-dicyclohexyl[(14)C]carbodi-imide, which irreversibly inhibited the partial reactions of oxidative phosphorylation by 95-100%. Solutions of the membranes were analysed on polyacrylamide gels. Of the radioactivity recovered from the gels 90% was shown to be associated with a single protein of molecular weight about 10000. The radioactive protein and associated phospholipid was solubilized from the membrane by extraction with chloroform-methanol mixtures and was concentrated 50-fold by solvent fractionation and adsorption chromatography on Sephadex LH-20. Several protein-radioactivity peaks were obtained by Sephadex LH-20 chromatography. However, 90-100% of the radioactivity in each peak was shown to be associated with a single protein similar to the major radioactive protein observed in electrophoretograms of the membrane solutions. It is concluded that dicyclohexylcarbodi-imide inhibits mitochondrial oxidative phosphorylation by reacting covalently with a group on this chloroform-methanol-soluble protein. The possible role of this protein in oxidative phosphorylation is discussed.  相似文献   

2.
BACKGROUND: Wilms' tumor 1 (WT1) gene expression is seen in a significant number of cases of human neoplasia; however, the mechanism of action remains to be clarified. We hypothesized that WT1 gene is a surrogate marker of proliferation in normal hematopoietic cells and leukemias. While we and others have recognized its value as a tool for the detection of minimal residual disease (MRD), the objective of this study was to confirm our hypothesis regarding normal. METHODS: Samples from healthy donors (n=16) and UC blood (n=9) were cultured in Methocult for 21 days. Colonies were analyzed on days 7, 14 and 21 by RT-PCR for WT1 gene expression. Our positive controls were samples from patients with leukemia (n=91). Negative controls were from normal volunteers without stimulation (n=26). RESULTS: Results showed a statistically significant difference (P<0.0001) between cultured groups, with the highest level of WT1 gene expression in the positive controls and on day 14, when cells are at their maximal proliferation. DISCUSSION: In conclusion, WT1 gene expression in the proliferating colonies was highest on day 14, although less than in leukemia samples, confirming our hypothesis that WT1 gene is a surrogate marker of proliferation, not only in leukemogenesis but also, to a lesser degree, in normal cell proliferation.  相似文献   

3.
Schizophrenia (SZ) is a devastating neuropsychiatric disorder affecting 1% of the general population, and is characterized by symptoms such as delusions, hallucinations, and blunted affect. While many ideas regarding SZ pathogenesis have been put forth, the majority of research has focused on neurotransmitter function, particularly in relation to altered dopamine activity. However, treatments based on this paradigm have met with only modest success, and current medications fail to alleviate symptoms in 30-60% of patients. An alternative idea postulated a quarter of a century ago by Feldberg (Psychol. Med. 6 (1976) 359) and Horrobin (Lancet 1 (1977) 936) involves the theory that SZ is associated in part with phospholipid/fatty acid abnormalities. Since then, it has been repeatedly shown that in both central and peripheral tissue, SZ patients demonstrate increased phospholipid breakdown and decreased levels of various polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (AA). Given the diverse physiological function of membrane phospholipids and PUFAs, an elucidation of their role in SZ pathophysiology may provide novel strategies in the treatment of this disorder. The purpose of this review is to summarize the relevant data on membrane phospholipid/PUFA defects in SZ, the physiological consequence of altered AA signaling, and how they relate to the neurobiological manifestations of SZ and therapeutic outcome.  相似文献   

4.
Desferrioxamine (deferoxamine) is an inhibitor of iron-dependent free radical reactions that has been used to investigate the role of such reactions in several animal model systems for human disease. In vitro, desferrioxamine is not only an iron chelator but also binds other metal ions, reacts with superoxide and hydroxyl radicals, affects eicosanoid synthesis, can act as a substrate for peroxidases and can generate a reactive nitroxide radical. However, considerations of desferrioxamine concentration in vivo suggest that its ability to inhibit iron-dependent free radical reactions is the major factor that accounts for desferrioxamine's generally-protective action in animal models of human disease.  相似文献   

5.
Selective oxidation of phosphatidylserine (PS) during apoptosis precedes its externalization in plasma membrane and is essential for the engulfment of apoptotic cells. To experimentally test whether PS oxidation stimulates its externalization via its effects on aminophospholipid translocase (APT) or by enhanced PS scrambling, action of oxidized PS (PSox) was studied using leukemia HL-60 cells and lymphoma Raji cells. Both PS and PSox were equally well recognized by APT. PSox did not inhibit APT. Rate of transmembrane PS diffusion was fourfold higher in cells with integrated PSox than with PS. Thus, PSox acts as a "non-enzymatic scramblase" likely contributing to PS externalization.  相似文献   

6.
7.
Mast cells are classically considered innate immune cells that act as first responders in many microbial infections and have long been appreciated as potent contributors to allergic reactions. However, recent advances in the realm of autoimmunity have made it clear that these cells are also involved in the pathogenic responses that exacerbate disease. In the murine models of multiple sclerosis, rheumatoid arthritis and bullous pemphigoid, both the pathogenic role of mast cells and some of their mechanisms of action are shared. Similar to their role in infection and a subset of allergic responses, mast cells are required for the efficient recruitment of neutrophils to sites of inflammation. Although this mast cell-dependent neutrophil response is protective in infection settings, it is postulated that neutrophils promote local vascular permeability and facilitate the entry of inflammatory cells that enhance tissue destruction at target sites. However, there is still much to learn. There is little information regarding mechanisms of mast cell activation in disease. Nor is it known how many mast cell-derived mediators are relevant and whether interactions with other cells are implicated in these diseases including T cells, B cells and astrocytes. Here we review the current state of knowledge about mast cells in autoimmune disease. We also discuss findings regarding newly discovered mast cell actions and factors that modulate mast cell function. We speculate that much of this new information will ultimately contribute to a greater understanding of the full range of mast cell actions in autoimmunity. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

8.
Vasoconstriction of the vertebral artery may be neurogenic in origin. Although the existence of a perivascular sympathetic plexus of the vertebral artery is not in doubt, no method used to date has conclusively demonstrated a direct sympathetic innervation of the vascular smooth muscle cells and, hence, vasomotor function. It was the aim of this study, therefore, to visualise and localise noradrenergic fibres in the wall of the vertebral artery. Intracranial vertebral artery specimens (10 vervet monkeys and 10 baboon vessels) were sectioned (40 mm serial sections) and treated with anti-tyrosine hydroxylase, anti-dopamine b-hydroxylase, and anti-chromogranin-A antibodies. Some evidence of catecholaminergic fibres in the tunica adventitia but not penetrating the external elastic lamina or tunica media of the vertebral artery wall was seen. These findings were confirmed by electron microscopy. It was concluded that although a perivascular sympathetic plexus exists, the vertebral artery of primates was not shown to have a direct sympathetic innervation and a neurogenic vasoconstrictor function is unlikely.  相似文献   

9.
Biosynthesis of D-glucaric acid in mammals: a free-radical mechanism?   总被引:1,自引:0,他引:1  
In the presence of iron salts and hydrogen peroxide, D-glucuronic acid was converted into D-glucaric acid. The reaction was strongly inhibited by free-radical scavengers and is ascribed to the action of the hydroxyl radical. The formation of D-glucarate was dependent upon pH and occurred in the presence of some iron-complexing agents. The first product of oxidation was a lactone that was a strong inhibitor of beta-D-glucuronidase and assumed to be D-glucaro-1,5-lactone. Microsomal preparations in the presence of NADPH also produced D-glucarate from D-glucuronic acid, presumably due to formation of hydrogen peroxide, and the product was an inhibitor of beta-D-glucuronidase. Superoxide did not produce D-glucarate from D-glucuronate. The cytochrome P450 system is more likely than "glucuronolactone dehydrogenase" to be responsible for the production of D-glucaric acid in vivo.  相似文献   

10.
A range of target-based agents for the treatment of solid tumors are in development. The epidermal growth factor receptor (EGFR) has been identified as a relevant target as it is involved in regulating several cellular functions important in the proliferation and survival of cancer cells, is commonly expressed at high levels in a range of tumors, and high expression is often related to poor prognosis. EGFR is a member of the ErbB family of receptors which also includes ErbB-2, ErbB-3, and ErbB-4. These receptors form dimers of the same type (homodimers) or with other family members (heterodimers), each combination resulting in different downstream effects. Some of the most advanced targeted agents in development are the EGFR tyrosine kinase inhibitors (EGFR-TKIs), of which ZD1839 ('Iressa') is an example. In Phase II monotherapy trials, oral ZD1839 was well tolerated and demonstrated clinically meaningful antitumor activity and symptom relief in pretreated patients with advanced NSCLC. Preclinical studies have suggested that the antitumor activity of ZD1839 does not depend on the level of EGFR expression. Furthermore, in addition to an effect on EGFR signaling, treatment with ZD1839 as well as with other quinazoline EGFR-TKIs, may also affect signaling of other ErbB family members. EGFR-TKIs have been shown in preclinical studies to increase the efficacy of cytotoxic drugs and Phase III trials of such combinations are ongoing. On the basis that different signal transduction pathways contribute to the control of tumor growth, future therapeutic approaches are likely to involve combination of different targeted agents.  相似文献   

11.
Cigarette smoking is known to contribute to inflammatory diseases of the respiratory tract by promoting recruitment of inflammatory-immune cells such as neutrophils and perhaps by altering neutrophil functional properties. We investigated whether acrolein, a toxic unsaturated aldehyde found in cigarette smoke, could directly affect neutrophil function. Exposure of freshly isolated human neutrophils to acrolein markedly inhibited spontaneous neutrophil apoptosis as indicated by loss of membrane asymmetry and DNA fragmentation and induced increased neutrophil production of the chemokine interleukin-8 (IL-8). Acrolein (1--50 microM) was found to induce marked activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinases (MAPKs), and inhibition of p38 MAPK activation by SB-203580 prevented acrolein-induced IL-8 release. However, inhibition of either ERK or p38 MAPK did not affect acrolein-dependent inhibition of apoptosis. Acrolein exposure prevented the activation of caspase-3, a crucial step in the execution of neutrophil apoptosis, presumably by direct inhibition of the enzyme. Our results indicate that acrolein may contribute to smoke-induced inflammatory processes in the lung by increasing neutrophil recruitment and reducing neutrophil clearance by apoptosis.  相似文献   

12.
Aggrecanase-mediated aggrecan degradation is a significant event in the early stages of osteoarthritis (OA). There has been much interest in the possible role of these aggrecanases, mainly aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), as therapeutic targets in OA. The deficiency of current pharmaceutical treatments is that they mainly target the symptoms of OA but do not address the fundamental mechanism behind OA which is the destruction of articular cartilage. Therefore, a treatment which would protect or regenerate cartilage on the cellular level would be desirable. Dehydroepiandrosterone (DHEA), classified as an adrenal androgen, is recently proposed to be “disease-modifying”, and has been found to counteract proinflammatory effects of catabolic cytokines, suggesting that it has a protective effect for osteoarthritic cartilage. The suppression by DHEA of some members of the MMP family in OA has been well demonstrated, however, the effect of DHEA on aggrecanases remains unknown. This article reviews recent findings with regard to aggrecanases as critical catabolic enzymes and DHEA as a therapeutic agent in OA, and further discusses the possible relationship between aggrecanase and DHEA in the progression of OA.  相似文献   

13.
14.
Objective Sympathetic overactivity is closely connected with cell injury and contractile dysfunction during myocardial ischemia/reperfusion (MI/R). Insulin exerts protection for the I/R heart and the underlying mechanisms remain unclear. This study aimed to investigate the ability of insulin to modulate β-adrenergic actions on myocardial contraction and post-ischemic injury in acute MI/R and the underlying mechanism. Methods Isolated hearts from adult SD rats were subjected to MI/R (30 min/2 h) and treated with isoproterenol (ISO) or/and insulin. Myocardial contraction, cardiomyocyte apoptosis, myocardial injury and infarction were assessed. In a separate study, isolated ventricular myocytes were subjected to simulated I/R (15/30 min) and myocyte shortening and intracellular Ca2+ transient in response to ISO during reperfusion were assessed with presence or absence of insulin. Results In isolated I/R hearts, insulin largely reversed the ISO-associated contractile functional impairment at 2 h after MI/R, inhibiting ISO-induced declines in heart rate and left ventricular systolic pressure by 34.0% and 23.0% and preventing ISO-induced elevation in left ventricular end-diastolic pressure by 28.7% respectively (all P < 0.05). In addition, ISO alone resulted in enlarged infarct size, elevated CK and LDH activity and increased apoptotic index in I/R hearts compared with vehicle, which were inhibited by treatment of insulin (all P < 0.05). Interestingly, in SI/R cardiomyocytes, insulin alone at 10−7 mol/l increased cell contraction whereas attenuated the positive inotropic response to ISO (10−9 mol/l) during R as evidenced by a 18.7% reduction in peak twitch amplitude and a 23.9% reduction in calcium transient amplitude (both P < 0.05). Moreover, insulin blunted ISO-mediated increase in PKA activity, enhanced the PKA-dependent phosphorylation of phospholamban (PLB), resulting in increased sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. Conclusion Insulin attenuated the contractile response to β-AR stimulation and suppressed ISO-elicited cardiac dysfunction and cell injury in MI/R. The inhibitory effect of insulin on the β-adrenergic action involved the inhibition of PKA-mediated Ca2+ transient and promotion of post-ischemic Ca2+ handling.  相似文献   

15.
PURPOSE OF REVIEW: Apolipoprotein (apo)CIII and apoAV play an important role in triglyceride metabolism as evidenced by the unambiguous and opposing phenotypes of transgenic and knockout mouse models. In this review we discuss studies on the genetics, protein structure, and regulation of apoCIII and apoAV and compare their potential molecular mechanisms of action in triglyceride metabolism. We examine the hypothesis that apoCIII and apoAV synergistically affect triglyceride metabolism. RECENT FINDINGS: It has now been firmly established that variation in plasma triglyceride levels in a wide range of human populations is strongly associated with genetic variation at the chromosomal locus encoding both the APOC3 and APOA5 genes, the APOA1/C3/A4/A5 gene cluster. The close physical linkage of these genes and the frequent concurrence of genetic variants, however, complicate the assignment of specific metabolic defects to specific polymorphisms. Recent insight into the regulation of APOC3 and APOA5 gene expression and structural modeling studies on the apoAV protein have provided novel clues for the potential molecular mechanisms responsible for the effects of apoCIII and apoAV on triglyceride metabolism. SUMMARY: Hypertriglyceridemia is a major independent risk factor in the development of cardiovascular disease. Moreover, triglyceride-derived fatty acids are thought to play a key role in the development and progression of the metabolic syndrome. As modulators of triglyceride metabolism, apoCIII and apoAV are key players and potential therapeutic targets. However, little is known of their molecular mechanism and potential cooperativity. Rational therapeutic application will require the filling of this hiatus in our knowledge.  相似文献   

16.
17.
Animals can show preference for a particular background as a way of decreasing visibility. Species with color polymorphism may have morph‐dependent background preference. I test this hypothesis on the orb‐weaving spider Parawixia bistriata. Adult females of P. bistriata present two distinct morphs characterized by brown and yellow opisthosomata. This nocturnal spider can be found in its retreat on the vegetation during the day. In order to examine whether females exhibit substrate preference dependent on their color morph, I first recorded the distribution of color morphs on different substrates (leaf and branch) and then performed a mark and release experiment. Field censuses indicated that the yellow morph was associated with leaves while the brown morph was found on either substrate type. The results of a mark and reciprocal release experiment agreed with the censuses and suggest that the two morphs differ in their association to substrate type: yellow females were associated with the leaf substrate, while brown females showed no association to a particular substrate type. Possible forces behind these differences in substrate choice are discussed.  相似文献   

18.
The trafficking of effector cells to sites of infection is crucial for antiviral responses. However, the mechanisms of recruitment of the interferon-γ-producing and cytotoxic CD56(+) T cells are poorly understood. Human mast cells are sentinel cells found in the skin and airway and produce selected proinflammatory mediators in response to multiple pathogen-associated signals. The role of human mast cell-derived chemokines in T-cell recruitment to virus infection was examined. Supernatants from primary human cord blood-derived mast cells (CBMCs) infected with mammalian reovirus were examined for chemokine production and utilized in chemotaxis assays. Virus-infected CBMCs produced several chemokines, including CCL3, CCL4, and CCL5. Supernatants from reovirus-infected CBMCs selectively induced the chemotaxis of CD8(+) T cells (10±1%) and CD3(+)CD56(+) T cells (19±5%). CD56(+) T-cell migration was inhibited by pertussis toxin (65±9%) and met-RANTES (56±7%), a CCR1/CCR5 antagonist. CD56(+) T cells expressed CCR5, but little CCR1. The depletion of CCL3, CCL4, and CCL5 from reovirus-infected CBMC supernatants significantly (41±10%) inhibited CD56(+) T-cell chemotaxis. This study demonstrates a novel role for mast cells and CCR5 in CD56(+) T-cell trafficking and suggests that human mast cells enhance immunity to viruses through the selective recruitment of cytotoxic effector cells to virus infection sites. These findings could be exploited to enhance local T-cell responses in chronic viral infection and malignancies at mast cell-rich sites.  相似文献   

19.
The 12S-lipoxygenase (12S-LOX) pathway of arachidonic acid (AA) metabolism is bifurcated at 12(S)-hydroperoxy-5Z,8Z,10E (12S-HpETE) in the reduction route to form 12S-hydroxy-eicosatetraenoic acid (12S-HETE) and in 8(S/R)-hydroxy-11(S),12S-trans-epoxyeicosa-5Z,9E,14Z-trienoic acid (HXA3) synthase pathway, previously known as isomerization route, to form hepoxilins. Earlier we showed that the HXA3 formation is restricted to cellular systems devoid of hydroperoxide reducing enzymes, e.g. GPxs, thus causing a persistent oxidative stress situation. Here, we show that HXA3 at as low as 100 nM concentration upregulates phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA and protein expressions, whereas other metabolites of AA metabolism 12S-HpETE and 12S-HETE failed to stimulate the PHGPx. Moreover, the decrease in 12S-HpETE below a threshold value of the hydroperoxide tone causes both suppression of the overall 12S-LOX activity and a shift from HXA3 formation towards 12S-HETE formation. We therefore propose that under persistent oxidative stress the formation of HXA3 and the HXA3-induced upregulation of PHGPx constitute a compensatory defense response to protect the vitality and functionality of the cell.  相似文献   

20.
Epidemiological studies have indicated an inverse association between high uricemia and incidence of Parkinson's disease (PD). To investigate the link between endogenous urate and neurotoxic changes involving the dopaminergic nigrostriatal system, this study evaluated the modifications in the striatal urate levels in two models of PD. To this end, a partial dopaminergic degeneration was induced by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) in mice, while a severe dopaminergic degeneration was elicited by unilateral medial forebrain bundle infusion of 6‐hydroxydopamine (6‐OHDA) in rats. Urate levels were measured by in vivo microdialysis at 7 or 14 days from toxin exposure. The results obtained demonstrated higher urate levels in the dopamine‐denervated striatum of 6‐OHDA‐lesioned rats compared with the intact striatum. Moreover, an inverse correlation between urate and dopamine levels was observed in the same area. In contrast, only a trend to significant increase in striatal urate was observed in MPTP‐treated mice. These results demonstrate that a damage to the dopaminergic nigrostriatal system elevates the striatal levels of urate, and suggest that this could be an endogenous compensatory mechanism to attenuate dopaminergic neurodegeneration. This finding may be important in light of the epidemiological and preclinical evidences that indicate a link between urate and development of PD.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号