首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaporation and canopy characteristics of coniferous forests and grasslands   总被引:12,自引:0,他引:12  
Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour (gs and ga, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (E max) and maximum surface conductances (gsmax) (medians = 0.46 mm h-1 and 22 mm s-1). However, on a daily basis, median E max of coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of ga for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in gs is >0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in ga is generally ±0.15 or less.Boundary-line relationships between gs and light and air saturation deficit (D) vary considerably. Attainment of gsmax occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between gs and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small ga, like grassland, by using D at the evaporating surface (D0) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining D0 from measurable quantities. Evaporation rate also depends on the availability of water in the root zone.Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.  相似文献   

2.
Dynamics of carbon dioxide exchange in the Common Spruce (Picea abies L.) in relation to environmental factors was monitored during several seasons. Direct linear dependence of photosynthesis rate from the levels of air temperature and illumination was found, and correlation coefficients were 0.860 (p < 0.001) and 0.704 (p < 0.001). It was found that seasonal maximum of net photosynthesis production was attained at temperatures of 23–25°C. A decrease in temperature optimum was associated with reduction of the CO2 assimilation intensity level. The impact of environmental factors on photosynthesis intensity is discussed in terms of the developed model. Using this model, we demonstrated that temperature and illumination dynamics in toto accounts for 82% of changes in photosynthesis rate. It is the air temperature that exerts the strongest influence on the process of photosynthesis. According to our calculations, the net photosynthesis level was three times higher than the level of respiration. This is indicative of a positive carbon dioxide balance in the needles of the Common Spruce.  相似文献   

3.
Summary Schistidium antarctici is the commonest of five bryophytes known in the Windmill Islands area of Wilkes Land, Greater Antarctica. In moist habitats it forms closed carpets, but in dry sites it develops a short cushion growth form. Carbon dioxide exchange of both a mesic (Sm) and a xeric growth form (Sx) was investigated by means of an IRGA system in the field near Casey Station under natural light and simulated ambient or controlled temperature conditions in the plant chamber. The chlorophyll content in Sm was three times higher than in Sx. The light compensation point of Sm was lower than in Sx. The data for photosynthesis and dark respiration were computed by means of non-linear and linear regression analysis. Sm was more productive and had a wider temperature range of positive net photosynthesis than Sx under similar conditions. Dark respiration per gram of the whole moss sample was identical in both ecodemes. A decline of the photosynthesis curves at quantum flux densities above 500 mol m-2 s-1 PAR indicated a photoinhibitory effect in Sm. Sx was even more sensitive to high irradiance levels. Photoinhibition was not apparent in laboratory measurements under artificial light. According to our field measurements the photoinhibitory effect increases with increasing temperature. Moisture loss was avoided during the experiments by water supply from the bottom and frequently spraying the moss samples with water. In the natural habitat the desiccating effect of solar radiation is important, as it quickly causes photosynthesis to cease. The moss will dry out sooner in a xeric habitat than in one which is continuously moist. Consequently, the mesic Schistidium might particularly be subjected to photoinhibition by bright sunshine.Cordially dedicated to Professor Dr. O.H. Volk, Würzburg, on the event of his 85th birthday  相似文献   

4.
Observations of photosynthetically active radiation (PAR) and global solar radiation (G) at Wuhan, Central China during 2005–2012 were first reported to investigate PAR variability at different time scales and its PAR fraction (F p) under different sky conditions. Both G irradiances (I g) and PAR irradiances (I p) showed similar seasonal features that peaked in values at noon during summer and reached their lower values in winter. F p reached higher values during either sunrise or sunset; lower values of F p appeared at local noon because of the absorption effects of water vapor and clouds on long-wave radiation. There was an inverse relationship between clearness index (K t) and F p; the maximum I p decreased by 22.3 % (39.7 %) when sky conditions changed from overcast to cloudless in summer (winter); solar radiation was more affected by cloudiness than the seasonal variation in cloudy skies when compared with that in clear skies. The maximum daily PAR irradiation (R p) was 11.89 MJ m?2 day?1 with an annual average of 4.85 MJ m?2 day?1. F p was in the range of 29–61.5 % with annual daily average value being about 42 %. Meanwhile, hourly, daily, and monthly relationships between R p and G irradiation (R g) under different sky conditions were investigated. It was discovered that cloudy skies were the dominated sky condition in this region. Finally, a clear-sky PAR model was developed by analyzing the dependence of PAR irradiances on optical air mass under various sky conditions for the whole study period in Central China, which will lay foundations for ecological process study in the near future.  相似文献   

5.
Carbon dioxide exchange of Alnus rubra   总被引:1,自引:1,他引:0  
  相似文献   

6.
7.
The contribution of CO2 to cell material synthesis in Thiobacillus novellus under nutrient-limited conditions was estimated by comparing 14CO2 uptake rates of steady-state autotrophic cultures with that of heterotrophic and mixotrophic cultures at a given dilution rate. Under heterotrophic conditions, some 13% of the cell carbon was derived from CO2; this is similar to the usual anaplerotic CO2 fixation in batch cultures of heterotrophic bacteria. Under mixotrophic conditions, the contribution of CO2 to cell material synthesis increased with increasing S2O3 2- -to-glucose ratio in the medium inflow; at a ratio of 10, ca. 32% of the cell carbon was synthesized from CO2. We speculate that the use of CO2 as carbon source, even when the glucose provided is sufficient to fulfill the biosynthetic needs, may augment the growth rate of the bacterium under such nutrient-limited conditions and could therefore be of survival value in nature. Some of the CO2 assimilated was excreted into the medium as organic compounds under all growth conditions, but in large amounts only in autotrophic environments as very low dilution rates.  相似文献   

8.
Phytophagous insects can have severe impacts on forested ecosystems in outbreak situations but their contribution to flows of energy and matter is otherwise not so well known. Identifying the role of phytophagous insects in forested ecosystems is partly hindered by the difficulty of combining results from population and community ecology with those from ecosystem ecology. In our study we compared the effects of aphids and leaf-feeding lepidopterous larvae on the epiphytic micro-organisms in the canopies of spruce, beech and oak, and on the vertical flow of energy and nutrients from the canopies down to the forest floor. We particularly searched for patterns resulting from endemic herbivory rather than outbreak situations. Excreta of lepidopterous larvae and aphids promoted the growth of epiphytic micro-organisms (bacteria, yeasts, filamentous fungi) on needles and leaves, which suggests that micro-organisms were energy limited. Leachates from needles and leaves of infested trees contained higher concentrations of dissolved organic C and lower concentrations of NH4-N and NO3-N, relative to uninfested trees. The seasonal abundance of herbivores and micro-organisms significantly affected the dynamics of throughfall chemistry; for instance, concentrations of inorganic N were lower underneath infested than uninfested trees during June and July. There was little difference between the chemistry of soil solutions collected from the forest floor beneath infested and uninfested trees. Thus, under moderate to low levels of infestation the effects of above-ground herbivory seems to be obscured in the soil through buffering biological processes.  相似文献   

9.
In NW Patagonia, South America, natural shrublands and mixed forests of short Nothofagus antarctica (G. Forst.) Oerst. trees are currently being replaced by plantations with Pseudotsuga menziesii (Mirb) Franco. This land use change is controversial because the region is prone to drought, and replacement of native vegetation by planted forests may increase vegetation water use. The goal of this study was to examine the physiological differences, especially the response of water flux and canopy conductance to microclimate, that lead to greater water use by exotic trees compared to native trees. Meteorological variables and sapflow density of P. menziesii and four native woody species were measured in the growing season 2005–2006. Canopy conductance (gc) was estimated for both the exotic (monoculture) and native (multi-species) systems, including the individual contributions of each species of the native forest. Sapflow density, stand-level transpiration and gc were related to leaf-to-air vapor pressure difference (VPD). All native species had different magnitudes and diurnal patterns of sapflow density compared to P. menziesii, which could be explained by the different gc responses to VPD. Stomatal sensitivity to VPD suggested that all native species have a stronger stomatal control of leaf water potential and transpiration due to hydraulic limitations compared to P. menziesii. In conclusion, differences in water use between a P. menziesii plantation and a contiguous native mixed forest of similar basal area could be explained by different gc responses to VPD between species (higher sensitivity in the native species), in addition to particular characteristics of the native forest structure.  相似文献   

10.
This study examined the temporal patterns of establishment, suppression, and release of major tree species in two old-growth Ohio forest remnants as a means to determine the past disturbance history of these forests. Increment cores were taken from a total of 154 trees from two well-drained, upland plots and two poorly-drained, bottomland plots in each of the two forested areas. Acer saccharum and Fagus grandifolia exhibited multiple episodes of suppression and release prior to becoming canopy trees, and could tolerate suppressions as long as 84 years. In contrast, Quercus macrocarpa, Q. muehlenbergii, Prunus serotina, and Acer saccharinum rerely exhibited any tolerance to suppression and appeared to have entered the canopy after single disturbances had opened large areas of canopy. There was clear synchrony in the temporal pattern of establishment and final release from suppression among trees from bottomland plots scattered throughout the stands, indicating that relatively large disturbances were important in these poorly-drained areas. In contrast, there was little synchrony among trees from well-drained upland plots, except in a single instance where selective cutting of Quercus trees opened the canopy. Thus, the canopy of upland site was likely subjected only to small disturbances resulting from the death of one or a few trees. At the whole of forest level, there was evidence of episodic recruitment of canopy trees in both forests. Establishment of Fraxinus spp. and Quercus spp. were particularly episodic, and few Fraxinus or Quercus trees alive today established during the last century. These data suggest that large disturbances have affected canopy dynamics of both upland and bottomland areas prior to 1900 and in bottomland forests through this century. In contrast, disturbances in upland areas during this century have been restricted to small, treefall-generated canopy gaps.  相似文献   

11.
We quantified the effect of stand age and tree species composition on canopy transpiration (EC) by analysing transpiration per unit leaf area (EL) and canopy stomatal conductance (GS) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), Populus tremuloides Michx (quaking aspen), Pinus banksiana Lamb. (jack pine), and Picea mariana (Mill.) (black spruce). While fine roots were positively correlated with stand EC; leaf area index, basal area, and sapwood area were not. Stands less than 70 years old were dominated by Populus tremuloides and Pinus banksiana and stands greater than 70 years old were composed almost entirely of Picea mariana. As Populus tremuloides and Pinus banksiana increased in size and age, they displayed an increasing sapwood to leaf area ratio (AS : AL), a constant minimum leaf water potential (ΨL), and a constant proportionality between GS at low vapour pressure deficit (Dj GSref) and the sensitivity of GS to D (–δ). In contrast, AS : AL, minimum ΨL, and the proportionally between –δ and GSref decreased with height and age in Picea mariana. A GS model that included the effects of D, AS : AL, tree height, and for Picea mariana an increasing soil to leaf water potential gradient with stand age, was able to capture the effects of contrasting hydraulic properties of Picea mariana, Populus tremuloides and Pinus banksiana during stand development after wildfire.  相似文献   

12.
Root turnover and productivity of coniferous forests   总被引:29,自引:1,他引:29  
R. Fogel 《Plant and Soil》1983,71(1-3):75-85
Summary Fine roots and mycorrhizae have recently been shown to produce a major portion of the organic matter entering decomposition. Roots and mycorrhizae constitute 63 to 70% of total net primary production in Douglas-fir and Pacific silver fir stands. The importance of roots in primary production makes the method of root extraction from the soil important. Wet-sieving with small mesh screens is more effective than hand-sorting for fine roots and mycorrhizae. Screen size, the efficiency of recovery, the physiological status of the roots and coversion factors to derive biomass from the numbers of root tips should be stated. Published data is enhanced if the phenological status of the stand, its age, tree density, and soil texture are quoted.Given the large fluxes in fine root and mycorrhiza populations, single biomass estimates are not useful in studies of ecosystem structure and function. A better understanding needs accurate methods to distinguish live and dead roots, data on the production and turnover of large roots, and data on the transfer of nutrients accompanying the large input of roots to decomposition.  相似文献   

13.
14.
川西亚高山针叶林土壤颗粒的分形特征   总被引:14,自引:0,他引:14  
分形理论为土壤等复杂体系的定量化研究提供了一种有效工具。本文以12个川西亚高山针叶林土壤颗粒组成数据为基础,运用分形模型研究了亚高山针叶林土壤颗粒的分形维数。结果表明,12个川西亚高山针叶林表层土壤颗粒的分形维数D为2.5209~2.7978。通过逐步多元回归分析,土壤颗粒分形维数仅与<0.001 mm颗粒含量的相关系数达极显著。土壤颗粒分形维数与土壤有机质含量、全氮含量和pH相关性不显著,然而土壤有机质含量与全氮含量呈极显著正相关。本研究探讨了利用土壤颗粒粒径分布的分形维数来定量表征川西亚高山针叶林土壤的特征。  相似文献   

15.
The aim of this study is to explore the effects of canopy conditions on clump and culm numbers, and the morphological plasticity and biomass distribution patterns of the dwarf bamboo species Fargesia nitida. Specifically, we investigated the effects of canopy condi-tions on the growth and morphological characteristics of F. nitida, and the adaptive responses of F. nitida to dif-ferent canopy conditions and its ecological senses. The results indicate that forest canopy had a significant effect on the genet density and culm number per clump, while it did not affect the ramet density. Clumps tended to be few and large in gaps and forest edge plots, and small under forest understory plots. The ramets showed an even distribution under the closed canopy, and clus-ter distribution under gaps and forest edge plots. The forest canopy had a significant effect on both the ramets'biomass and biomass allocation. Favourable light conditions promoted ramet growth and biomass accumulation. Greater amounts of biomass in gaps and forest edge plots were shown by the higher number of culms per clump and the diameter of these culms. Under closed canopy, the bamboos increased their branching angle, leaf biomass allocation, specific leaf area and leaf area ratio to exploit more favourable light conditions in these locations. The spacer length, specific spacer length and spacer branching angles all showed significant differences between gaps and closed canopy conditions. The larger specific spacer length and spacer branching angle were beneficial for bamboo growth, scattering the ramets and exploiting more favourable light conditions. In summary, this study shows that to varying degrees, F nitida exhibits both a wide ecological amplitude and high degree of morphological plasticity in response to differing forest canopy conditions. More-over, the changes in plasticity enable the plants to optimize their light usage efficiency to promote growth and increase access to resources available in heteerogeneous light environoments.  相似文献   

16.
Atmospheric deposition is an important nutrient input to forests. The chemical composition of the rainfall is altered by the forest canopy due to interception and canopy exchange. Bulk deposition and stand deposition (throughfall plus stemflow) of Na+, Cl?, K+, Ca2+, Mg2+, PO 4 3? , SO 4 2? , H+, Mn2+, Al3+, Fe2+, NH 4 + , NO 3 ? and Norg were measured in nine deciduous forest plots with different tree species diversity in central Germany. Interception deposition and canopy exchange rates were calculated with a canopy budget model. The investigated forest plots were pure beech (Fagus sylvatica L.) plots, three-species plots (Fagus sylvatica, Tilia cordata Mill. or T. platyphyllos Scop. and Fraxinus excelsior L.) and five-species plots (Fagus sylvatica, T. cordata or T. platyphyllos, Fraxinus excelsior, Acer platanoides L., A. pseudoplatanus L. or A. campestre L. and Carpinus betulus L.). The interception deposition of all ions was highest in pure beech plots and was negatively related to the Shannon index. The stand deposition of K+, Ca2+, Mg2+ and PO 4 3? was higher in mixed species plots than in pure beech plots due to higher canopy leaching rates in the mixed species plots. The acid input to the canopy and to the soil was higher in pure beech plots than in mixed species plots. The high canopy leaching rates of Mn2+ in pure beech plots indicated differences in soil properties between the plot types. Indeed, pH, effective cation exchange capacity and base saturation were lower in pure beech plots. This may have contributed to the lower leaching rates of K+, Ca2+ and Mg2+ compared to the mixed species plots. However, foliar analyses indicated differences in the ion status among the tree species, which may additionally have influenced canopy exchange. In conclusion, the nutrient input to the soil resulting from deposition and canopy leaching was higher in mixed species plots than in pure beech plots, whereas the acid input was highest in pure beech plots.  相似文献   

17.
Mangrove forests exchange materials with the coastal ocean through tidal inundation. In this study, we aim to provide an overview of the published data of carbon (C) and nutrient exchange of mangrove forests with the coastal ocean at different spatial scales to assess whether the exchange is correlated with environmental parameters. We collected data on C (dissolved and particulate organic C; DOC and POC) and nutrient exchange (dissolved and particulate nitrogen, N and phosphorus, P) and examined the role of latitude, temperature, precipitation, geomorphological setting, hydrology, dominant mangrove species and forest area in explaining the variability of the exchange. We identified that there are a range of methodologies used to determine material exchange of mangroves with the coastal zone, each methodology providing data on the exchange at different spatial scales. This variability of approaches has limited our understanding of the role of mangroves in the coastal zone. Regardless, we found that mangrove forests export C and nutrients to the coastal zone in the form of litter and POC. We found that precipitation is a major factor influencing the export of C in the form of litter; sites with low annual precipitation and high mean annual temperatures export more C as litter than sites with high precipitation and low temperature. Furthermore, export of POC is higher in zones with low mean annual minimum temperature. Identification of broad-scale trends in DOC and dissolved nutrients was more difficult, as the analysis was limited by scarcity of suitable studies and high variability in experimental approaches. However, tidal amplitude and the concentration of nutrients in the floodwater appears to be important in determining nutrient exchange. The strongest conclusion from our analysis is that mangrove forests are in general sources of C and nutrients in the form of litter and POC and that they are most likely to be exporting C subsidies in dry regions.  相似文献   

18.
The photosynthetic rate of water stressed leaves of Primula palinuri was reduced drastically by stomatal closure, not by limitations imposed on the capacity of the photosynthetic apparatus, when water loss exceeded 20% of the water content of turgid leaves. The sudden decrease in phtosynthesis was not observed when the lower epidermis of the leaves had been removed. In these ‘stripped’ leaves, inhibition of photosynthesis increased only gradually during the wilting caused by increasing water stress and was complete when the relative water content was as low as 20% compared with the initial value. This corresponded to a water potential of about-40 bar. The light intensity at which half-maximum rates of photosynthesis were observed decreased as stress increased. In intact leaves photosynthesizing in the presence of CO2, light scattering, which is a measure of thylakoid energization, increased steeply during stomatal closure. The observed increase corresponded to the light scattering level measured in the absence of CO2. When the lower epidermis was removed, no sudden increase in thylakoid energization could be observed during dehydration. Thylakoid energization remained high even at low water potentials. It decreased drastically only below a relative water content of 20%. Irrespective, of the extent of water stress, CO2 fixation of stripped leaves increased when the oxygen content of air was reduced from 21% to 2%. Usually the transition from 21 to 2% O2 was accompanied by increased thylakoid energization. The increase in energization was more pronounced below than above a relative water content of 50%. The data show that energy-dissipating photorespiratory CO2 turnover in the in tercellular space of water-stressed leaves whose stomata are closed decreases only slowly as water stress increases. Respiratory CO2 production by leaves in the dark was even more resistant to water stress than photosynthesis. It was still significant at water potentials as low as-80 bar.  相似文献   

19.
While photosynthetic responses of C3 plants to elevated CO2 are fairly well documented, whole-plant water use under such conditions has been less intensively studied. Woody species, in particular, have exhibited highly variable stomatal responses to high CO2 as determined by leaf-level measurements. In this study, sap flux of Pinus taeda L. saplings was periodically monitored during the 4th year of an open-top chamber CO2 fumigation experiment. Water use per unit sapwood area did not differ between treatments. Furthermore, the ratio of leaf area to sapwood area did not change under high CO2, so that average canopy stomatal conductance (on a unit leaf area basis) remained unaffected by the CO2 treatment. Thus, the only effect of high CO2 was to increase whole-plant water use by increasing sapling leaf area and associated conducting sapwood area. Such an effect may not directly translate to forest-level responses as the feedback effects of higher leaf area at the canopy scale cannot be incorporated in a chamber study. These feedbacks include the potential effect of higher leaf area index on rainfall and light interception, both of which may reduce average stomatal conductance in intact forest canopies. Received: 13 March 1998 / Accepted: 8 July 1998  相似文献   

20.
Although hydraulic redistribution of soil water (HR) by roots is a widespread phenomenon, the processes governing spatial and temporal patterns of HR are not well understood. We incorporated soil/plant biophysical properties into a simple model based on Darcy's law to predict seasonal trajectories of HR. We investigated the spatial and temporal variability of HR across multiple years in two old-growth coniferous forest ecosystems with contrasting species and moisture regimes by measurement of soil water content (theta) and water potential (Psi) throughout the upper soil profile, root distribution and conductivity, and relevant climate variables. Large HR variability within sites (0-0.5 mm d(-1)) was attributed to spatial patterns of roots, soil moisture and depletion. HR accounted for 3-9% of estimated total site water depletion seasonally, peaking at 0.16 mm d(-1) (ponderosa pine; Pinus ponderosa) or 0.30 mm d(-1) (Douglas-fir; Pseudotsuga menziesii), then declining as modeled pathway conductance dropped with increasing root cavitation. While HR can vary tremendously within a site, among years and among ecosystems, this variability can be explained by natural variability in Psi gradients and seasonal courses of root conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号