首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
NAD-specific glutamate dehydrogenase (GDH-B)1 was induced in a wild-type strain derived of - 1278b by -amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing -amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate.Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases are lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.The following abbreviations and symbols are used GDH-A NADP-specific glutamate dehydrogenase [l-glutamate - NADP+ oxido-reductase (deaminating), EC 1.4.1.4] - gdhA genotype associated with GDH-A deficiency - GDH-B NAD-specific glutamate dehydrogenase, [L-glutamate NAD+ oxido-reductase (deaminating), EC 1.4.1.2] - gdhB genotype associated with GDH-B deficiency - gdhCR genotype associated with derepressed GDH-B synthesis - specific growth rate (h-1) - x cell density - t time (h)  相似文献   

2.
Summary Changes in the concentrations of ammonia, glutamate, alanine, aspartate, -ketoglutarate, oxaloacetate and succinate were measured in freeze-clamped lateralred muscle, dorsal white muscle and liver, and in rapidly cooled blood of goldfish after 12 h of anoxia. Alanine accumulation, succinate accumulation and aspartate depletion are observed in all tissues examined; in the liver the concentrations of glutamate increase and those of ammonia decrease. The mass-action ratio of the glutamate-pyruvate transaminase-catalyzed reaction stays within one order of magnitude from thermodynamic equilibrium in the direction of alanine formation. The mass-action ratio of the glutamate-oxaloacetate transaminase reaction is far from equilibrium when measured oxaloacetate concentrations are used. When levels of free oxaloacetate are calculated from LDH and MDH equilibrium constants, the mass-action ratio of glutamate-oxaloacetate transamination is close to equilibrium in the direction of aspartate formation. Since neither alanine nor glutamate decreases, and since ammonia gradients suggest a continuous ammonia production in all tissues examined, anaerobic proteolysis is assumed. A possible coupling between amino acid catabolism and ethanol production is discussed.Abbreviations ALA alanine - ASP aspartate - EDTA ethylene diamine tetraacetate - FP ox oxidated flavoprotein - FP red reduced flavoprotein - FUM fumarate - GLU glutamate - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase - IMP inosine monophosphate - KG -ketoglutarate - LDH lactate dehydrogenase - MAL malate - MAR mass action ratio - MDH malate dehydrogenase - OAA oxaloacetate - PYR pyruvate - sAMP adenylosuccinate - SDH succinate dehydrogenase - SUCC succinate  相似文献   

3.
Summary A process for l-leucine production was studied using Corynebacterium glutamicum for the conversion of -ketoisocaproate. When this precursor was added to the culture medium in a concentration of 20 g/l about 16 g/l l-leucine were formed after a fermentation time of 57 h and the molar yield was 91%. Using a fed-batch culture it was possible to produce 24 g/l of l-leucine from 32 g/l of -ketoisocaproate within 23 h. Enzymatic studies indicate that in this glutamate-producing bacterium -ketoisocaproate is converted into l-leucine via the transaminase B reaction and l-glutamate is regenerated by the glutamate dehydrogenase. By the addition of -ketoisocaproate to the culture medium the specific activity of transaminase B was increased threefold.  相似文献   

4.
Two classes of ornithine-nonutilizing (oru) mutants of Pseudomonas aeruginosa PAO were investigated. Strains carrying the oru-310 mutation were entirely unable to grow on l-ornithine as the only carbon and nitrogen source and were affected in the assimilation of a variety of nitrogen sources (e.g., amino acids, nitrate). The oru-310 mutation caused changes in the regulation of the catabolic NAD-dependent glutamate dehydrogenase; this enzyme was no longer inducible by glutamate but instead could be induced by ammonia. The oru-310 locus was cotransducible with car-9 and tolA in the 10 min region of the chromosome. An oru-314 mutant was severely handicapped in ornithine medium but could grow when a good carbon source was added; the mutant also showed pleiotropic growth effects related to nitrogen metabolism. The oru-314 mutation affected the regulation of the anabolic NADP-dependent glutamate dehydrogenase, which was no longer repressed by glutamate but showed normal derepression in the presence of ammonia. The oru-314 locus was mapped by transduction near met-9011 at 55 min. Both oru mutants could grow on l-glutamate, l-proline, or l-ornithine amended with 2-oxoglutarate, albeit slowly. We speculate that insufficient 2-oxoglutarate concentrations might account, at least in part, for the Oru- phenotype of the mutants.  相似文献   

5.
Rhodopseudomonas acidophila strain 7050 can satisfy all its nitrogen and carbon requirements from l-alanine. Addition of 100 M methionine sulfoximine to alanine grown cultures had no effect on growth rate indicating that deamination of alanine via alanine dehydrogenase and re-assimilation of the released NH 4 + by glutamine synthetase/glutamate synthase was an insignificant route of nitrogen transfer in this bacterium. Determination of aminotransferase activities in cell-free extracts failed to demonstrate the presence of direct routes from alanine to either aspartate or glutamate. The only active aminotransferase involving l-alanine was the alanine-glyoxylate enzyme (114–167 nmol·min–1·mg–1 protein) which produced glycine as end-product. The amino group of glycine was further transaminated to yield aspartate via a glycineoxaloacetate aminotransferase (117–136 nmol·min–1 ·mg–1 protein). No activity was observed when 2-oxoglutarate was substituted for oxaloacetate. The formation of glutamate from aspartate was catalysed by aspartate-2-oxoglutarate aminotransferase (85–107 nmol·min–1·mg–1 protein). Determinations of free intracellular amino acid pools in alanine and alanine+100 M methionine sulfoximine grown cells showed the predominance of glutamate, glycine and aspartate, providing further evidence that in alanine grown cultures R. acidophila satisfies its nitrogen requirements for balanced growth by transamination.Abbreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulfoximine - GOT glutamate-oxaloacetate aminotransferase - GPT glutamate-pyruvate amino-transferase - AGAT alanine-glyoxylate aminotransferase - GOAT glycine-oxaloacetate aminotransferase - GOTAT glycine-2-oxoglutarate aminotransferase - AOAT alanine-oxaloacetate aminotransferase  相似文献   

6.
The utilization of some amino acids, added at 1 mM and 10 mM concentrations, as the sole combined nitrogen sources by Frankia sp. strain CpI1, has been investigated. Glutamine, like NH 4 + , provided rapid growth without N2 fixation. Histidine at 1 mM yielded poor N2-fixing activity but better cell growth than N2. Aspartate, glutamate, alanine, proline, each at 1 mM concentration, supported similar levels of N2 fixation and growth. Growth on 10 mM glutamate, proline, or histidine resulted in poor N2-fixing activity and poor cell growth. Cells grown on 10 mM alanine had about half the N2-fixing activity of cells grown on N2 but growth was good. Aspartate at 10 mM concentration, however, stimulated N2-fixing activity dramatically and promoted faster growth. Enzyme analysis suggested that asparate is catabolized by glutamate-oxaloacetate transaminase (GOT), since GOT specific activity was induced, and aspartase activity was not detected, in cells grown on aspartate as the sole combined nitrogen source. Thinlayer chromatography (TLC) of metabolites extracted from N2-grown cells fed with [14C]-aspartate showed that label was rapidly accumulated mainly on aspartate and/or glutamate, depending on the cells' physiological state, without detectable labeling on fumarate or oxaloacetate (OAA). These findings provide evidence that aspartate is catabolized by GOT to OAA which, in turn, is rapidly converted to -ketoglutarate through the TCA cycle and then to glutamate by GOT or by glutamate synthase (GOGAT). The stimulation of N2 fixation and growth by aspartate is probably caused by an increased intracellular glutamate pool.  相似文献   

7.
Ammonium assimilation was studied in a nitrogenfixing Arthrobacter strain grown in both batch and ammonium-limited continuous cultures. Arthrobacter sp. fluorescens grown in nitrogen-free medium or at low ammonium levels assimilated NH 4 + via the glutamine synthetase/glutamate synthase pathway. When ammonium was in excess it was assimilated via the alanine dehydrogenase pathway. Very low levels of glutamate dehydrogenase were found, irrespective of growth conditions.Abbreviations GS glutamine synthetase - GOGAT glutamine oxoglutarate aminotransferase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

8.
Summary In our laboratory, EAPc-7 a strain having higher aspartase activity was derived from Escherichia coli ATCC 11303. For the improvement of l-aspartic acid productivity using EAPc-7 cells immobilized in -carrageenan, it was necessary to eliminate the fumarase activity which converts fumaric acid to l-malic acid. Several treatments for specifically eliminating fumarase activity from EAPc-7 cells were tested and it was found that when EAPc-7 cells were treated in a culture broth (pH 4.9) containing 50 mM l-aspartic acid at 45° C for 1 h, fumarase activity was almost completely eliminated without inactivation of the aspartase.The treated cells, immobilized in -carrageenan, were used for continuous production of l-aspartic acid from ammonium fumarate. The formation of l-malic acid was negligible and the half-life of the immobilized preparation was 126 days.Productivity of immobilized preparation of treated EAPc-7 cells in l-aspartic acid production was six times of that of the parent cell preparation.  相似文献   

9.
A comparative assay of nitrogen metabolism enzymes in the Yarrowia lipolytica mutant N1 grown under conditions promoting the overproduction of either -ketoglutaric acid (KGA) or citric acid showed that the overproduction of KGA correlates with an increase in the activities of the NAD- and NADP-linked glutamate dehydrogenase, glutamic–pyruvic transaminase, and glutamic–oxaloacetic transaminase reactions. These reactions are likely to be responsible for the overproduction of KGA by this mutant. In contrast, the overproduction of citric acid correlated with a decline in the activities of the NAD- and NADP-linked glutamate dehydrogenases and with an increase in the activities of glutamine synthetase and glutamate synthase.  相似文献   

10.
Summary Hepatopancreas tissue from the terrestrial snailsOtala lactea, Helix aspersa andStrophocheilus oblongus and the aquatic snailsBiomphalaria glabrata, Viviparus viviparus andLymnaea stagnalis was investigated for the presence of the various transaminases and glutamate dehydrogenase (EC 1.4.1.2 L-glutamate: NAD+ oxidoreductase). The cytosolic transaminases showed a broad substrate specificity, transferring the -amino function of most amino acids to -ketoglutarate. The main transaminase activities present were those of asparate transaminase (EC 2.6.1.1 L-aspartate: 2-oxoglutarate aminotransferase) and alanine transaminase (EC 2.6.1.2 L-alanine: 2-oxoglutarate aminotransferase). These two transaminases were also present in the mitochondrial fraction and thus exist in gastropod hepatopancreas as isozymes.Low levels of glutamate dehydrogenase activity were detected in hepatopancreas mitochondria from terrestrial and aquatic snails. The activity appears to be that of a typical animal glutamate dehydrogenase, preferentially utilizing NAD+ as a cofactor and being activated by adenine nucleotides and inhibited by guanine nucleotides.Supported by grants from the USPHS (AI 05006 and DE-00118) and the NSF (GB-38138)  相似文献   

11.
NH 4 + excretion was undetectable in N2-fixing cultures ofRhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH 4 + to the medium. The glutamate analog,l-methionine-dl-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH 4 + . When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH 4 + . Nitrogenase activities and NH 4 + production from fixed N2 were increased considerably when a combined nitrogen source, NH 4 + (>40 moles NH 4 + /mg cell protein in 6 days) orl-glutamate (>60 moles NH 4 + /mg cell protein in 6 days) was added to the cultures together with MSX.Biochemical analysis revealed thatR. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH 4 + as well as by glutamate.The results demonstrate that utilization of solar energy to photoproduce large quantities of NH 4 + from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

12.
Summary The isoleucine--ketoglutarate and valine--ketoglutarate transaminase activities have been attributed to an enzyme coded in E. coli K-12 by the ilvE gene. I report here evidence that these two activities can be dissociated and appear to be the products of two different genes. Mutants altered in the ilvE gene are devoid of isoleucine--ketoglutarate transaminase activity and possess a normal valine--ketoglutarate transaminase activity. I describe here mutants lacking valine transaminase activity. They are altered in a gene, ilvJ, located between ilvE and ilvD at 83 min on the E. coli K-12 map. Temperature-sensitive revertants of the mutant containing the ilvJ mutation show a temperature-sensitive valine--ketoglutarate transaminase activity. I conclude that ilvJ is the structural gene for valine--ketoglutarate transaminase.  相似文献   

13.
Feedback inhibition of crude and purified extracts of homoserine dehydrogenase and threonine deaminase activities in the genusBifidobacterium was studied. Homoserine dehydrogenase was partially or completely inhibited byl-threonine, and a marked inhibitory effect byl-isoleucine on threonine deaminase was observed. In the speciesBifidobacterium cuniculi high levels ofl-valine reversed the inhibitory effect ofl-isoleucine. The -aminobutyric acid-resistant mutant Ru 326/106 of the speciesB. ruminale, overproducer ofl-isoleucine, had a derepressed homoserine dehydrogenase and a lesser feedback inhibition byl-threonine. Homoserine dehydrogenase appeared to be in bifids specifically NAD dependent. The regulatory mechanisms of aspartate family amino acid biosynthesis in bifidobacteria was discussed.  相似文献   

14.
Summary Proline-producing strains of Serratia marcescens Sr41 were constructed by three rounds of mutagenesis. A strain SP103 which did not degrade l-proline carried the putA mutation leading to lack of proline oxidase. A 3,4-dehydroproline-resistant mutant SP105, derived from strain SP103, carried the dpr-1 mutation which resulted in desensitization of the feedback inhibition of glutamate kinase. Strain SP103 produced 5.5 mg of l-proline per ml of fermentation medium containing sucrose and urea. Growth inhibition by proline analogs was enhanced when succinate was used as a carbon source in the medium. A thiazolidine-4-carboxylate-resistant mutant SP126 derived from strain SP105 produced 20.5 mg of l-proline per ml of medium. The mutation carried by strain SP126 might be distant from dpr-1 and putA mutations on the chromosome. Pyrroline-5-carboxylate reductase was not repressed by proline in S. marcescens Sr41.  相似文献   

15.
Methanosarcina barkeri was able to grow on L-alanine and L-glutamate as sole nitrogen sources. Cell yields were 0.5 g/l and 0.7 g/l (wet wt), respectively. The mechanism of ammonia assimilation inMethanosarcina barkeri strain MS was studied by analysis of enzyme activities. Activity levels of nitrogen-assimilating enzymes in extracts of cells grown on different nitrogen sources (ammonia, 0.05–100 mM; L-alanine, 10 mM; L-glutamate, 10 mM) were compared. Activities of glutamate dehydrogenase, glutamate synthase, glutamine synthetase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase could be measured in cells grown on these three nitrogen sources. Alanine dehydrogenase was not detected under the growth conditions used. None of the measured enzyme activities varied significantly in response to the NH4 + concentration. The length of the poly--glutamyl side chain of F420 derivatives turned out to be independent of the concentration of ammonia in the culture medium.Abbreviations ADH alanine dehydrogenase - FO 7,8-didemethyl-8-hydroxy-5-deazariboflavin - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase - GS glutamine synthetase - H4MPT tetrahydromethanopterin  相似文献   

16.
Summary Corynebacterium glutamicum possesses NAD-independent lactate dehydrogenases. The d-lactate dehydrogenase is consitutive, the l-lactate dehydrogenase is inducible. Enzyme measurements, gel electrophoretic studies and mutant studies suggest that both enzymes are responsible for the oxidation of the chemically synthesized precursor dl--hydroxybutyrate. Mutants with increased d-lactate utilization were selected. In mutant dl-4 the specific activity of the d-lactate dehydrogenase is increased 3 fold. This mutant utilizes the d-isomer of hydroxybutyrate to completion, which does not occur in the wild type. This results in the formation of 103 mmol/l l-isoleucine by mutant dl-4 as compared to 71 mmol/l in its ancestor.  相似文献   

17.
Mesophyll protoplasts of Lycopersicon pennelli Corr., a wild relative of tomato, were electrofused with those from a dihaploid potato clone, cv Nicola, with the objectives of transferring saline tolerance from L. pennellii to cultivated potato. 150 calli were selected from the fusion experiments, finally giving 2 hybrid shoots. Their hybrid nature was verified by examining isoenzyme patterns for esterases (EST), peroxidase (PRX), phosphogluconate dehydrogenase (6-PGD), and glutamate oxaloacetate transaminase (GOT). The hybrid plants had an intermediate morphology, and grew vigorously in vitro. When transplanted to soil, they were less vigorous, due to difficulties in rooting, but were still capable of flowering, and forming short stolons and mishaped tubers, probably resulting from the effects of gene dosage due to the novel association of two genomes from a tuberizing (potato) and a non tuberizing species (L. pennellii). The characteristics of such mishaped tubers provided strong evidence of a hybrid nature for the selected plants. The hybrid plants were highly sterile, producing only 3–7% viable pollen. Tests for salt tolerance showed that the growth of the somatic hybrid plants was reduced by 50% as for L. pennellii, whilst potato did not grow at all under saline conditions.Abbreviations MS Murashige and Skoog basal medium - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - BAP 6-benzylaminopurine - PEG polyethylen glycol 6,000 - MES 2-(N-morpholino)ethanesulfonic acid - AC alternating current - EST esterases - PRX peroxidase - 6-PGD phosphogluconate dehydrogenase - GOT glutamate oxaloacetate transaminase - FDA fluorescein diacetate  相似文献   

18.
Two mutant strains of Bacillus licheniformis insensitive to catabolite repression were selected by classical mutagenesis in connection with the development of a fed-batch procedure for protease production. B. licheniformis 4a produced up to 20 U (Anson-Units) subtilisin Carlsberg/ml in fed-batch experiments in the presence of up to 1.5 m glycerol, but was inhibited by excess ammonium. Formation of spores, excretion of -amylase and the biosynthesis of citrate synthase and isocitrate dehydrogenase were likewise not repressed by glycerol. The strain was characterized by unusually low activity of the -oxoglutarate dehydrogenase complex and increased biosynthesis of polyglutamic acid in the presence and excretion of -oxoglutarate in the absence of ammonium, respectively. The results are discussed in view of a possible connection between the defect in the -oxoglutarate dehydrogenase complex and insensitivity to catabolite repression. The second strain B. licheniformis 114 was able to synthesize 11.5 U protease/ml independently of the glycerol and ammonium concentration in the medium. Correspondence to: G. Bierbaum  相似文献   

19.
The mechanism of ammonia assimilation in nitrogen fixing bacteria   总被引:1,自引:0,他引:1  
Summary Enzymatic and genetic evidence are presented for a new pathway of ammonia assimilation in nitrogen fixing bacteria: ammonium glutamine glutamate. This route to the important glutamate-glutamine family of amino acids differs from the conventional pathway, ammonium glutamate glutamine, in several respects. Glutamate synthetase [(glutamine amide-2-oxoglutarate aminotransferase) (oxidoreductase)], which is clearly distinct from glutamate dehydrogenase, catalyzes the reduced pyridine nucleotide dependent amination of -ketoglutarate with glutamine as amino donor yielding two molecules of glutamate as product. The enzyme is completely inhibited by the glutamine analogue DON, whereas glutamate dehydrogenase is not affected by this inhibitor; the glutamate synthetase reaction is irreversible. Glutamate synthetase is widely distributed in bacteria; the pyridine nucleotide coenzyme specificity of the enzyme varies in many of these species.The activities of key enzymes are modulated by environmental nitrogenous sources; for example, extracts of N2-grown cells of Klebsiella pneumoniae form glutamate almost exclusively by this new route and contain only trace amounts of glutamate dehydrogenase activity whereas NH3-grown cells possess both pathways. Also, the biosynthetically active form of glutamine synthetase with a low K m for ammonium predominates in the N2-grown cell.Several mutant strains of K. pneumoniae have been isolated which fail to fix nitrogen or to grow in an ammonium limited environment. Extracts of these strains prepared from cells grown on higher levels of ammonium have low levels of glutamate synthetase activity and contain the biosynthetically inactive species of glutamine synthetase along with high levels of glutamate dehydrogenase. These mutants missing the new assimilatory pathway have serious defects in their metabolism of many inorganic and organic nitrogen sources; utilization of at least 20 different compounds is effected. We conclude that the new ammonia assimilatory route plays an important role in nitrogenous metabolism and is essential for nitrogen fixation.Abbreviation DON 6-diazo-5-oxo-l-norleucine  相似文献   

20.
Two systems for l-glutamate transport were found in Salmonella typhimurium LT-2 GltU+ (glutamate utilization) mutants. The first one is similar to the glt system previously described in Escherichia coli; by transductional analysis the structural gene, gltS, coding for the transport protein was located at minute 80 of the chromosome as part of the operon gltC-gltS, and its regulator, the gltR gene, near minute 90; the gltS gene product transports both l-glutamate and l-aspartate, is sodium independent, and is -hydroxyaspartate sensitive. The second transport system, whose structural gene was called gltF and is located at minute 0, was l-glutamate specific, sodium independent, and -methylglutamate sensitive. Two aspartase activities occurred in S. typhimurium LT-2: the first one was present only in the GltU+ mutants, had a pH 6.4 optimum, was essential for both l-glutamate and l-aspartate metabolism, and mapped at minute 94, close to the ampC gene. The second one had a pH 7.2 optimum, could be induced by several amino acids, and thus may have a general role in nitrogen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号