首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified membrane-bound Na,K-ATPase incubated with cobalt-tetrammine-ATP [Co(NH3)4ATP], which is a stable MgATP complex analog, shows two new types of membrane crystals, a new p21 form and a p4 form. The building blocks of the crystalline arrays correspond to (αβ)2 dimers of the enzyme protein suggesting that α-α interaction may be important in the pumping process.  相似文献   

2.
The structure of two-dimensional crystals of membrane-bound Na,K-ATPase from rabbit kidney has been analyzed with a correlation averaging procedure. Two principally different crystal forms are observed with p1 and p21 symmetry, respectively. In the p1 form the averaged projection structure shows a triangular shaped protein domain interpreted as a protomer (alpha beta-unit) of Na,K-ATPase. In the p21-form the stain-deficient area is extended toward a twofold symmetry axis. The results are in good agreement with a previous analysis where Fourier methods were applied to well ordered crystals of pig kidney Na,K-ATPase and illustrate that the correlation averaging procedure can be used for the analysis of membrane crystals of Na,K-ATPase showing curved lattice lines.  相似文献   

3.
Transferred nuclear Overhauser effect measurements (in the two-dimensional mode) have been used to determine the three-dimensional conformation of an ATP analogue, Co(NH3)4ATP, at the active site of sheep kidney Na,K-ATPase. Previous studies have shown that Co(NH3)4ATP is a competitive inhibitor with respect to MnATP for the Na,K-ATPase [Klevickis, C., & Grisham, C.M. (1982) Biochemistry 21, 6979. Gantzer, M.L., et al. (1982) Biochemistry 21, 4083]. Nine unique proton-proton distances on ATPase-bound Co(NH3)4ATP were determined from the initial build-up rates of the cross-peaks of the 2D-TRNOE data sets. These distances, taken together with previous 31P and 1H relaxation measurements with paramagnetic probes, are consistent with a single nucleotide conformation at the active site. The bound Co(NH3)4ATP) adopts an anti conformation, with a glycosidic torsion angle of 35 degrees, and the conformation of the ribose ring is slightly N-type (C2'-exo, C3'-endo). The delta and gamma torsional angles in this conformation are 100 degrees and 178 degrees, respectively. The nucleotide adopts a bent configuration, in which the triphosphate chain lies nearly parallel to the adenine moiety. Mn2+ bound to a single, high-affinity site on the ATPase lies above and in the plane of the adenine ring. The distances from enzyme-bound Mn2+ to N6 and N7 are too large for first coordination sphere complexes, but are appropriate for second-sphere complexes involving, for example, intervening hydrogen-bonded water molecules. The NMR data also indicate that the structure of the bound ATP analogue is independent of the conformational state of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The uptake of mannitol in Escherichia coli is controlled by the phosphoenolpyruvate dependent phosphotransferase system. Enzyme II mannitol (EIIMtl) is part of the phosphotransferase system and consists of three covalently bound domains. IICMtl, the integral membrane domain of EIIMtl, is responsible for mannitol transport across the cytoplasmic membrane. In order to understand this molecular process, two-dimensional crystals of IICMtl were grown by reconstitution into lipid bilayers and their structure was investigated by cryo-electron crystallography. The IICMtl crystals obey p22121 symmetry and have a unit cell of 125 Ax65 A, gamma=90 degrees. A projection structure was determined at 5 A resolution using both electron images and electron diffractograms. The unit cell contains two IICMtl dimers with a size of about 40 Ax90 A, which are oriented up and down in the crystal. Each monomer exhibits six domains of high density which most likely correspond to transmembrane alpha-helices and cytoplasmic loops.  相似文献   

5.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

6.
The structure of the two-dimensional crystals of cytochrome oxidase prepared with deoxycholate has been investigated. The crystals have space group p121 and contain a monomer (two heme-two copper complex) in the asymmetric unit. They are in the form of sheets and contain no continuous bilayer; the entire surface of the molecule seems to be visible in negatively stained samples. The monomer is roughly 110 Å long and resembles a lopsided “Y”. The domains which form the arms of the Y are 55 Å in length and have a center to center separation of 40 Å. These domains are on the matrix side of the molecule and are thought to be buried in the bilayer of the inner mitochondrial membrane. The cytoplasmic side of the molecule is composed of the single large domain which is the stem of the Y. The overall structure matches that of cytochrome oxidase seen in the p22121 crystals derived by Triton X100 treatment of mitochondria.  相似文献   

7.
Butcher SE  Allain FH  Feigon J 《Biochemistry》2000,39(9):2174-2182
Cations play an important role in RNA folding and stabilization. The hairpin ribozyme is a small catalytic RNA consisting of two domains, A and B, which interact in the transition state in an ion-dependent fashion. Here we describe the interaction of mono-, di-, and trivalent cations with the domains of the ribozyme, as studied by homo- and heteronuclear NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping, and intermolecular NOEs indicate that the B domain contains four to five metal binding sites, which bind Mn(2+), Mg(2+), and Co(NH(3))(6)(3+). There is no significant structural change in the B domain upon the addition of Co(NH(3))(6)(3+) or Mg(2+). No specific monovalent ion binding sites exist on the B domain, as determined by (15)NH(4)(+) binding studies. In contrast to the B domain, there are no observable metal ion interactions within the internal loop of the A domain. Model structure calculations of Mn(2+) interactions at two sites within the B domain indicate that the binding sites comprise major groove pockets lined with functional groups oriented so that multiple hydrogen bonds can be formed between the RNA and Mn(H(2)O)(6)(2+) or Co(NH(3))(6)(3+). Site 1 is very similar in geometry to a site within the P4-P6 domain of the Tetrahymena group I intron, while site 2 is unique among known ion binding sites. The site 2 ion interacts with a catalytically essential nucleotide and bridges two phosphates. Due to its location and geometry, this ion may play an important role in the docking of the A and B domains.  相似文献   

8.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

9.
The spatial structure of cytosolic chicken aspartate aminotransferase (AAT) has been determined by X-ray crystallographic analysis at 2.8 A resolution. AAT consists of two chemically identical subunits. Each subunit can be subdivided into the large pyridoxal phosphate (PLP) binding domain and the small domain. The two active sites of AAT are situated in deep clefts at the subunit interface. The binding of PLP and 2-oxoglutarate is described. Conformations of the following enzyme forms have been compared by difference Fourier syntheses: the nonliganded PLP-form in phosphate and acetate buffers; the non-liganded pyridoxamine phosphate (PMP) form; complexes of the PLP-form with glutarate and 2-oxoglutarate. Lattice-induced dynamic asymmetry of the dimeric AAT molecules was revealed. In one subunit the small domain is mobile and shifted either toward the active site ("closed" conformation) or in the opposite direction ("open" conformation). The closed conformation is induced by the binding of dicarboxylate anions. In the second subunit the small domain is immobile and shifted toward the active site in all enzyme forms or complexes studied. In this subunit, there occurs a rotation of the PLP ring by approximately 20 degrees toward the substrate site. The rotation is observed when crystals are soaked in 0.6 saturated (NH4)2SO4 solution buffered with 0.3 M potassium phosphate, pH 7.5; it was explained by formation of an external aldimine between PLP and NH3. This aldimine is not formed in the presence of dicarboxylates or acetate. It was inferred that dicarboxylate or acetate anions stabilize the internal PLP-lysine aldimine and prevent its reaction with ammonia. Conversion of AAT from the PLP- to PMP-form is accompanied by rotation of the coenzyme ring by approximately 20 degrees; the rotation occurs in both subunits.  相似文献   

10.
BACKGROUND: Cyanase is an enzyme found in bacteria and plants that catalyzes the reaction of cyanate with bicarbonate to produce ammonia and carbon dioxide. In Escherichia coli, cyanase is induced from the cyn operon in response to extracellular cyanate. The enzyme is functionally active as a homodecamer of 17 kDa subunits, and displays half-site binding of substrates or substrate analogs. The enzyme shows no significant amino acid sequence homology with other proteins. RESULTS: We have determined the crystal structure of cyanase at 1.65 A resolution using the multiwavelength anomalous diffraction (MAD) method. Cyanase crystals are triclinic and contain one homodecamer in the asymmetric unit. Selenomethionine-labeled protein offers 40 selenium atoms for use in phasing. Structures of cyanase with bound chloride or oxalate anions, inhibitors of the enzyme, allowed identification of the active site. CONCLUSIONS: The cyanase monomer is composed of two domains. The N-terminal domain shows structural similarity to the DNA-binding alpha-helix bundle motif. The C-terminal domain has an 'open fold' with no structural homology to other proteins. The subunits of cyanase are arranged in a novel manner both at the dimer and decamer level. The dimer structure reveals the C-terminal domains to be intertwined, and the decamer is formed by a pentamer of these dimers. The active site of the enzyme is located between dimers and is comprised of residues from four adjacent subunits of the homodecamer. The structural data allow a conceivable reaction mechanism to be proposed.  相似文献   

11.
The exchange inert coordination complexes, Cr(H2O)4GDP, Cr(H2O)4GTP, Cr(NH3)4GDP, Cr(NH3)4GTP, Co(NH3)4GDP, and Co(NH3)4GTP have been synthesized and characterized. The lambda and delta coordination isomers of Cr(H2O)4GDP, Cr(NH3)4GDP, and the four Cr(H2O)4GTP isomers have been separated by reverse phase HPLC and characterized by their CD spectra. While the isomers of Co(NH3)4GTP have not been successfully separated, 31P NMR spectroscopy reveals the presence of the lambda and delta forms. The complexes, Cr(H2O)4GDP, Co(NH3)4GDP, Cr(H2O)4GTP, and Co(NH3)4GTP, are linear competitive inhibitors of avian phosphoenolpyruvate carboxykinase. The Ki values of 30 microM, 540 microM, 40 microM, and 12 microM, respectively, were determined for these complexes using Mn-IDP as the nucleotide substrate in the phosphoenolpyruvate carboxylation direction or Mn-ITP as nucleotide substrate for the oxalacetate decarboxylation reaction. The lambda and delta isomers of Cr(H2O)4 GDP show little specificity (a twofold maximum difference in Ki) for the enzyme. The isomeric forms of Cr(H2O)4 GTP demonstrate no observed stereoselectivity of interaction with the enzyme. All of the complexes tested, except for Cr(NH3)4GDP and Co(NH3)4GDP, which have larger Ki values, are good substrate analogs for P-enolpyruvate carboxykinase. When the substrate is Mn-GTP, fixed at 0.2 mM at pH 6.0, enzyme activity is stimulated two- to two and a half-fold by Cr(H2O)4GTP. A Dixon plot reveals that the stimulatory effect is saturated at 0.4 mM Cr(H2O)4GTP. The interaction of the enzyme with Cr(H2O)4GTP appears to produce a "memory" effect which is manifest with guanosine nucleotide substrates, but which is not observed with the alternative substrate Mn-ITP.  相似文献   

12.
The Na(+)-dependent or E1 stages of the Na,K-ATPase reaction require a few micromolar ATP, but submillimolar concentrations are needed to accelerate the K(+)-dependent or E2 half of the cycle. Here we use Co(NH(3))(4)ATP as a tool to study ATP sites in Na,K-ATPase. The analogue inactivates the K(+) phosphatase activity (an E2 partial reaction) and the Na,K-ATPase activity in parallel, whereas ATP-[(3)H]ADP exchange (an E1 reaction) is affected less or not at all. Although the inactivation occurs as a consequence of low affinity Co(NH(3))(4)ATP binding (K(D) approximately 0.4-0.6 mm), we can also measure high affinity equilibrium binding of Co(NH(3))(4)[(3)H]ATP (K(D) = 0.1 micro m) to the native enzyme. Crucially, we find that covalent enzyme modification with fluorescein isothiocyanate (which blocks E1 reactions) causes little or no effect on the affinity of the binding step preceding Co(NH(3))(4)ATP inactivation and only a 20% decrease in maximal inactivation rate. This suggests that fluorescein isothiocyanate and Co(NH(3))(4)ATP bind within different enzyme pockets. The Co(NH(3))(4)ATP enzyme was solubilized with C(12)E(8) to a homogeneous population of alphabeta protomers, as verified by analytical ultracentrifugation; the solubilization did not increase the Na,K-ATPase activity of the Co(NH(3))(4)ATP enzyme with respect to parallel controls. This was contrary to the expectation for a hypothetical (alphabeta)(2) membrane dimer with a single ATP site per protomer, with or without fast dimer/protomer equilibrium in detergent solution. Besides, the solubilized alphabeta protomer could be directly inactivated by Co(NH(3))(4)ATP, to less than 10% of the control Na,K-ATPase activity. This suggests that the inactivation must follow Co(NH(3))(4)ATP binding at a low affinity site in every protomeric unit, thus still allowing ATP and ADP access to phosphorylation and high affinity ATP sites.  相似文献   

13.
The new bifunctional reagent, N-(4-chloromercuriphenyl)-4-chloro-3,5-dinitrobenzamide (I) was used to investigate the quaternary structure of yeast alcohol dehydrogenase. The four essential - SH groups of the enzyme were substituted by the mercuriphenyl moiety of compound I in the course of the reaction of one mole of protein with four moles of the reagent (one molecule of compound I incorporated by yeast alcohol dehydrogenase monomer). In a second step only two of the four chlorodinitrophenyl fragments bound to the protein established intermonomeric cross-links with non-essential - NH2 groups. The resulting dimers could be re-dissociated with mercaptoethanol. This result suggests that the four protomers of the enzyme could be arranged as a dimer of dimers.  相似文献   

14.
Two-dimensional crystallization of bovine rhodopsin   总被引:1,自引:0,他引:1  
Bovine rhodopsin has been clustered into two-dimensional crystals in highly purified native rod disk membranes and studied with negative staining and transmission electron microscopy. The lattice is P2(1) with dimensions of 8.3 X 7.9 nm and interaxis angles of 86 +/- 3 degrees. 110 images of ordered areas were digitized and aligned with computer-correlation methods to calculate an average image with diffraction to the fourth order. The images were computer-filtered and reconstructed to approx. 2 nm resolution. When crystals appeared they covered 20-40% of the surface of the preparation and, since rhodopsin is at least 95% of the protein, there is no doubt that the crystals were due to rhodopsin. There appear to be two rhodopsin dimers per unit cell. Each rhodopsin molecules takes up about 7.5 nm2 of membrane area and is estimated to be associated with about 12 lipids on each side of the membrane. The membrane area found for bovine rhodopsin supports the rhodopsin origin of rarely seen but more highly ordered two-dimensional crystals found in detergent-treated frog rod membranes (Corless, J.M., McCaslin, D.R. and Scott, B.L. (1982) Proc. Natl. Acad. Sci. USA 79, 1116-1120). Furthermore, the rhodopsin membrane area is close to that of bacteriorhodopsin and is consistent with a seven transmembrane helix structure proposed for rhodopsin (for references see Dratz, E.A. and Hargrave, D.A. (1983) Trends Biochem. Sci. 8, 128-131). Crystallization was accomplished by lowering the pH to 5.5 near the isoelectric point of rhodopsin, raising the salt concentration of 2 M (NH4)2SO4, adding 5% glucose and 0.02% Hibitane (Ayerst), a cationic amphipathic antiseptic that favored crystal growth.  相似文献   

15.
Respiratory complex I (NADH:ubiquinone oxidoreductase) is an L-shaped multisubunit protein assembly consisting of a hydrophobic membrane arm and a hydrophilic peripheral arm. It catalyses the transfer of two electrons from NADH to quinone coupled to the translocation of four protons across the membrane. Although we have solved recently the crystal structure of the peripheral arm, the structure of the complete enzyme and the coupling mechanism are not yet known. The membrane domain of Escherichia coli complex I consists of seven different subunits with total molecular mass of 258 kDa. It is significantly more stable than the whole enzyme, which allowed us to obtain well-ordered two-dimensional crystals of the domain, belonging to the space group p22(1)2(1). Comparison of the projection map of negatively stained crystals with previously published low-resolution structures indicated that the characteristic curved shape of the membrane domain is remarkably well conserved between bacterial and mitochondrial enzymes, helping us to interpret projection maps in the context of the intact complex. Two pronounced stain-excluding densities at the distal end of the membrane domain are likely to represent the two large antiporter-like subunits NuoL and NuoM. Cryo-electron microscopy on frozen-hydrated crystals allowed us to calculate a projection map at 8 A resolution. About 60 transmembrane alpha-helices, both perpendicular to the membrane plane and tilted, are present within one membrane domain, which is consistent with secondary structure predictions. A possible binding site and access channel for quinone are found at the interface with the peripheral arm. Tentative assignment of individual subunits to the features of the map has been made. The location of subunits NuoL and NuoM at substantial distance from the peripheral arm, which contains all the redox centres of the complex, indicates that conformational changes are likely to play a role in the mechanism of coupling between electron transfer and proton pumping.  相似文献   

16.
The octahedral complex tetraammine(chloroaquo)cobalt(III) dichloride is shown to be the HCl hydrolysis product of both P1,2-bidentate tetraammine(pyrophosphato)cobalt(III) [Co(NH3)4HP2O7 or CoPP] and bidentate tetraammine(phosphato)cobalt(III) [Co(NH3)4PO4 or CoP]. The complex crystallizes in the orthorhombic space group Pna21 with cell dimensions a = 13.033(2)A, b = 6.710(1)A, and c = 10.318(2)A; the crystal structure was refined to a final disagreement index of 0.033. The average of the four Co-N distances is 1.944 +/- 6A. The Co-Cl distance is 2.257(2)A and the Co-O(W) distance is 1.971(4)A. Both protons of the coordinated water molecule are engaged in strong hydrogen bonds to the two nonbonded chloride counterions with O(W)-Cl distances of 3.087(6)A and 3.123(6)A. Each nonbonded chloride is engaged in seven hydrogen bonding interactions resulting from the high ratio of hydrogen bond donors to acceptors in the CoP structure. Cobalt bisphosphate (CoP2) is the final enzyme hydrolysis product when CoPP is used as substrate in the yeast inorganic pyrophosphatase reaction. The bridge oxygen atom is the site of initial CoPP cleavage both for HCl catalyzed hydrolysis as well as for enzyme catalyzed hydrolysis.  相似文献   

17.
Inactivation of Na+/K(+)-ATPase activity by the MgPO4 complex analogue Co(NH3)4PO4 leads, in everted red blood cell vesicles, to the parallel inactivation of 22Na+/K+ flux and 86Rb/Rb+ exchange, but leaves the 22Na+/Na(+)-exchange activity and the uncoupled ATP-supported 22Na+ transport unaffected. Furthermore, inactivation of purified Na+/K(+)-ATPase by Co(NH3)4PO4 leads to a parallel decrease of the capacity of the [3H]ouabain receptor site, when binding was studied by the Mg2+/Pi-supported pathway (ouabain-enzyme complex II) but the capacity of the ouabain receptor site was unaltered, when the Na+/Mg2+/ATP-supported pathway (ouabain-enzyme complex I) was used. No change in the dissociation constants of either ouabain receptor complex was observed following inactivation of Na+/K(+)-ATPase. When eosin was used as a marker for the high-affinity ATP-binding site of the E1 conformation, formation of stable E'2.Co(NH3)4PO4 complex led to a shift in the high-affinity ATP-binding site towards the sodium form. This led to an increase in the dissociation constant of the enzyme complex with K+, from 1.4 mM with the unmodified enzyme to 280 mM with the Co(NH3)4PO4-inactivated enzyme. It was concluded, that the effects of Co(NH3)4PO4 on the partial activities of the sodium pump are difficult to reconcile with an alpha, beta-protomeric enzyme working according the Albers-Post scheme. The data are consistent with an alpha 2, beta 2 diprotomeric enzyme of interacting catalytic subunits working with a modified version of the Albers-Post model.  相似文献   

18.
The exchange-inert tetra-ammino-chromium complex of ATP [Cr(NH3)4ATP], unlike the analogous cobalt complex Co(NH3)4ATP, inactivated Na+/K(+)-ATPase slowly by interacting with the high-affinity ATP binding site. The inactivation proceeded at 37 degrees C with an inactivation rate constant of 1.34 x 10(-3) min-1 and with a dissociation constant of 0.62 microM. To assess the potential role of the water ligands of metal in binding and inactivation, a kinetic analysis of the inactivation of Na+/K(+)-ATPase by Cr(NH3)4ATP, and its H2O-substituted derivatives Cr(NH3)3(H2O)ATP, Cr(NH3)2(H2O)2ATP and Cr(H2O)4ATP was carried out. The substitution of the H2O ligands with NH3 ligands increased the apparent binding affinity and decreased the inactivation rate constants of the enzyme by these complexes. Inactivation by Cr(H2O)4ATP was 29-fold faster than the inactivation by Cr(NH3)4ATP. These results suggested that substitution to Cr(III) occurs during the inactivation of the enzyme. Additionally hydrogen bonding between water ligands of metal and the enzyme's active-site residues does not seem to play a significant role in the inactivation of Na+/K(+)-ATPase by Cr(III)-ATP complexes. Inactivation of the enzyme by Rh(H2O)nATP occurred by binding of this analogue to the high-affinity ATP site with an apparent dissociation constant of 1.8 microM. The observed inactivation rate constant of 2.11 x 10(-3) min-1 became higher when Na+ or Mg2+ or both were present. The presence of K+ however, increased the dissociation constant without altering the inactivation rate constant. High concentrations of Na+ reactivated the Rh(H2O)nATP-inactivated enzyme. Co(NH3)4ATP inactivates Na+/K(+)-ATPase by binding to the low-affinity ATP binding site only at high concentrations. However, inactivation of the enzyme by Cr(III)-ATP or Rh(III)-ATP complexes was prevented when low concentrations of Co(NH3)4ATP were present. This indicates that, although Co(NH3)4ATP interacts with both ATP sites, inactivation occurs only through the low-affinity ATP site. Inactivation of Na+/K(+)-ATPase was faster by the delta isomer of Co(NH3)4ATP than by the delta isomer. Co(NH3)4ATP, but not Cr(H2O)4ATP or adenosine 5'-[beta,gamma-methylene]triphosphate competitively inhibited K(+)-activated p-nitrophenylphosphatase activity of Na+/K(+)-ATPase, which is assumed to be a partial reaction of the enzyme catalyzed by the low-affinity ATP binding site.  相似文献   

19.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

20.
The connector protein of bacteriophage T3, p8, has been overexpressed in Escherichia coli. Purification of the oligomers built by several copies of p8 reveals a mixed population of dodecamers and tridecamers. The percentages of these two types of oligomers differ in every culture growth, indicating that assembly of this protein depends upon the conditions of the expression system. Those cultures that generated a majority of dodecamers allowed, after purification of the connectors, the two-dimensional crystallization of the dodecamers in a tetragonal arrangement, while the tridecamers did not form crystals. The processing and averaging of several images of frozen-hydrated crystals and their internal phase comparison shows that the crystals are arranged in a P42(1)2 space group, with cell unit dimensions of 165 x 165 A. The three-dimensional reconstruction generated with images of crystals ranging from 0 degrees to 60 degrees tilt reveals a wide domain surrounded by 12 protrusions and a narrow domain that serves to interact with the tail of the bacteriophage. A channel runs along the connector wide enough to allow the translocation of a double-stranded DNA molecule into the prohead. The general structure of the T3 connector is very similar to those obtained for other nonrelated bacteriophages and strongly suggests that the shape of this important viral structure is intimately related to its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号