首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A method was developed for synthesizing UDP-apiose [uridine 5'-(alpha-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5'-(alpha-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5'-(alpha-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [(3)H]UDP-[U-(14)C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the (3)H/(14)C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100 degrees C for 15min; (b) degraded at pH8.0 and 100 degrees C for 3min; (c) used as a substrate in the enzymic synthesis of [(14)C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [(3)H]UDP-[U-(14)C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-(14)C]apiose and phosphate formed on alkaline degradation of UDP-[U-(14)C]apiose was alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-(14)C]apiose and phosphate formed on acid hydrolysis of alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-(14)C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-(14)C]apiose to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80 degrees C, at pH8.0 and 25 degrees C and at pH8.0 and 4 degrees C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-(14)C]-apiose to d-[U-(14)C]apiose and UDP at pH3.0 and 40 degrees C was 4.67min. After 20 days at pH6.2-6.6 and 4 degrees C, 17% of the starting UDP-[U-(14)C]apiose was degraded to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-(14)C]apiose and UDP. After 120 days at pH6.4 and -20 degrees C 2% of the starting UDP-[U-(14)C]apiose was degraded and 4% was hydrolysed.  相似文献   

2.
Enzymatic glucosylation of dolichol monophosphate (dolichol-P) from UDP-D-[3H]glucose was studied using the microsomal fraction of BHK-21 cells. The reaction product was separated by preparative thin-layer chromatography, further purified by DEAE-cellulose acetate column chromatography, and characterized as dolichyl-beta-D-glucosyl phosphate (Dol-P-Glc). The microsomal fraction of BHK cells catalyzed the incorporation of glucose from UDP-[3H]glucose into ceramides (endogenous and exogenous) and Dol-P; both reactions required Mn2+. Maximal glucosylation of Dol-P was achieved at pH 5.6-5.8 in the presence of a non-ionic detergent, Zonyl A. Glucosylation of exogenous Dol-P, from UDP-Glc, was non-competitively inhibited by exogenous ceramides. Incubation of Dol-P-[3H]Glc or Dol-P-[14C]Glc with liposomes (containing ceramides) and the microsomal fraction of BHK-21 cells resulted in the formation of a radioactive glucolipid which comigrated with the same RF value as glucosylceramide (Glc-Cer) on silica gel thin-layer chromatography. Transfer of [14C]glucose from Dol-P-[14C]Glc to exogenous ceramides was confirmed by double-labeling techniques. The pH dependence for transfer of radio-labeled glucose from Dol-P-[3H]Glc to ceramides was multi-phasic (optima at pH 4.0 and 7.0); glycosylation occurred within 5 min and Zonyl A was absolutely essential for the transfer reaction. These results indicate that Dol-P-Glc may also participate in the synthesis of ceramide hexosides.  相似文献   

3.
The (Na+ + K+)-ATPase from dog kidney and partially purified membranes from HK dog erythrocytes were labeled with [3H]ouabain, solubilized with C12E8 and analyzed by HPLC through a TSK-GEL G3000SW column in the presence of C12E8, Mg2+, HPO4(2-) and glycerol at 20-23 degrees C. The peaks of [3H]ouabain bound to the enzyme from dog kidney and HK dog erythrocyte membranes corresponded to each other with apparent molecular weights of 470 000-490 000. In addition, these bindings of [3H]ouabain to the (Na+ + K+)-ATPase were observed to be stable at 20-23 degrees C for at least 18 h after the solubilization.  相似文献   

4.
The lipid A disaccharide of the Escherichia coli envelope is synthesized from the two fatty acylated glucosamine derivatives UDP-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucosamine (UDP-2,3-diacyl-GlcN) and N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D-glucosamine 1-phosphate (2,3-diacyl-GlcN-1-P) [Ray, B. L., Painter, G., & Raetz, C. R. H. (1984) J. Biol. Chem. 259, 4852-4859]. We have previously shown that UDP-2,3-diacyl-GlcN is generated in extracts of E. coli by fatty acylation of UDP-GlcNAc, giving UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc as the first intermediate, which is rapidly converted to UDP-2,3-diacyl-GlcN [Anderson, M. S., Bulawa, C. E., & Raetz, C. R. H. (1985) J. Biol. Chem. 260, 15536-15541; Anderson, M. S., & Raetz, C. R. H. (1987) J. Biol. Chem. 262, 5159-5169]. We now demonstrate a novel enzyme in the cytoplasmic fraction of E. coli, capable of deacetylating UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc to form UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine. The covalent structure of the previously undescribed UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine intermediate was established by 1H NMR spectroscopy and fast atom bombardment mass spectrometry. This material can be made to accumulate in E. coli extracts upon incubation of UDP-3-O-[(R)-3- hydroxymyristoyl]-GlcNAc in the absence of the fatty acyl donor [(R)-3-hydroxymyristoyl]-acyl carrier protein. However, addition of the isolated deacetylation product [UDP-3-O-[(R)-3-hydroxymyristoyl] glucosamine] back to membrane-free extracts of E. coli in the presence of [(R)-3-hydroxymyristoyl]-acyl carrier protein results in rapid conversion of this compound into the more hydrophobic products UDP-2,3-diacyl-GlcN, 2,3-diacyl-GlcN-1-P, and O-[2-amino-2-deoxy-N2,O3- bis[(R)-3-hydroxytetradecanoyl]-beta-D-glucopyranosyl]-(1----6)-2-amino- 2-deoxy-N2,O3-bis[(R)-3-hydroxytetradecanoyl]-alpha-D- glucopyranose 1-phosphate (tetra-acyldisaccharide-1-P), demonstrating its competency as a precursor. In vitro incubations using [acetyl-3H]UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc confirmed release of the acetyl moiety in this system as acetate, not as some other acetyl derivative. The deacetylation reaction was inhibited by 1 mM N-ethylmaleimide, while the subsequent N-acylation reaction was not. Our observations provide strong evidence that UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine is a true intermediate in the biosynthesis of UDP-2,3-diacyl-GlcN and lipid A.  相似文献   

5.
Jackman JE  Raetz CR  Fierke CA 《Biochemistry》1999,38(6):1902-1911
The enzyme UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase (LpxC) catalyzes the committed step in the biosynthesis of lipid A and is therefore a potential antibiotic target. Inhibition of this enzyme by hydroxamate compounds [Onishi, H. R.; Pelak, B. A.; Gerckens, L. S.; Silver, L. L.; Kahan, F. M.; Chen, M. H.; Patchett, A. A.; Stachula, S. S.; Anderson, M. S.; Raetz, C. R. H. (1996) Science 274, 980-982] suggested the presence of a metal ion cofactor. We have investigated the substrate specificity and metal dependence of the deacetylase using spectroscopic and kinetic analyses. Comparison of the steady-state kinetic parameters for the physiological substrate UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and an alternative substrate, UDP-GlcNAc, demonstrates that the ester-linked R-3-hydroxymyristoyl chain increases kcat/KM (5 x 10(6))-fold. Metal-chelating reagents, such as dipicolinic acid (DPA) and ethylenediaminetetraacetic acid, completely inhibit LpxC activity, implicating an essential metal ion. Plasma emission spectroscopy and colorimetric assays directly demonstrate that purified LpxC contains bound Zn2+. This Zn2+ can be removed by incubation with DPA, causing a decrease in the LpxC activity that can be restored by subsequent addition of Zn2+. However, high concentrations of Zn2+ also inhibit LpxC. Addition of Co2+, Ni2+, or Mn2+ to apo-LpxC also activates the enzyme to varying degrees while no additional activity is observed upon the addition of Cd2+, Ca2+, Mg2+, or Cu2+. This is consistent with the profile of metals that substitute for catalytic zinc ions in metalloproteinases. Co2+ ions stimulate LpxC activity maximally at a stoichiometry of 1:1. These data demonstrate that E. coli LpxC is a metalloenzyme that requires bound Zn2+ for optimal activity.  相似文献   

6.
A microsomal preparation from chondroitin 4-sulfate-synthesizing cultured mouse mastocytoma cells was incubated with UDP-[3H]GalNAc, UDP-GlcA, and 3'-phosphoadenylylphosphosulfate (PAPS) for 30 s at 10 degrees C and with UDP-[14C]GlcA, UDP-GalNAc, and PAPS for 4 h at 37 degrees C for synthesis of 3H- and 14C-labeled chondroitin/chondroitin sulfate. The latter incubation provided more than 100 times as much product as did the short incubation at 10 degrees C. Upon chromatography of the isolated labeled glycosaminoglycans on a Sepharose CL-6B column, most of the [14C]glycosaminoglycan from the 4 h, 37 degrees C incubation was excluded from the column, indicating that this nascent glycosaminoglycan had been polymerized fully. In contrast, most of the [3H]glycosaminoglycan from the 30 s, 10 degrees C incubation was mostly retarded upon cochromatography on this same column, indicating that the nascent glycosaminoglycan was still growing in size. The labeled fractions representing chondroitin/chondroitin sulfate of varying sizes were analyzed for degree of sulfation by degradation with chondroitin ABC lyase followed by paper electrophoresis of the products. Results indicated that the [14C]chondroitin/chondroitin sulfate formed in the 4-h incubation was 60-70% sulfated. Incomplete chains of [3H]chondroitin/chondroitin sulfate formed in the 30-s incubation were also sulfated as much as 20-25%. As the size of the [3H]chondroitin/chondroitin sulfate increased, there was a concomitant increase in sulfation. These results demonstrate that in this microsomal system sulfation takes place while the nascent chondroitin glycosaminoglycan chains are still actively growing in length, although the sulfation lags somewhat behind the polymerization. This not only indicates a common membrane location for both polymerization and sulfation of chondroitin but also demonstrates that the sulfation of chondroitin by these mastocytoma cells may occur during the process of glycosaminoglycan polymerization rather than subsequent to completion of the glycosaminoglycan chains.  相似文献   

7.
A particulate fraction from porcine aorta catalyzed the incorporation of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc into both GlcNAc-pyrophosphorylpolyprenol and GlcNAc-GlcNAc-pyrophosphorylpolyprenol. This transfer utilized endogenous lipid and required a divalent cation. Mn2+ was the best metal ion and was optimum at 2.3 mM. This same particulate fraction was previously shown to transfer mannose from GDP-[14C]mannose to endogenous lipid to form mannosylphosphorylpolyprenol (Chambers, J., and Elbein, A.D. (1975) J. Biol. Chem. 250, 6904-6915). Both the GlcNAc activities and the mannose activity were solubilized by treatment of the particulate fraction with the detergent Nonidet P-40. The enzymes were partially purified by chromatography on DEAE-cellulose and on Sephadex G-200. These soluble enzymes required the addition of acceptor lipid for activity. An acidic lipid fraction, isolated from pig liver and having the properties of dolichyl phosphate, was active with either the GlcNAc or the mannose transferase. Chemically synthesized dolichyl phosphate was also active with either of these enzymes. The products formed from either GlcNAc or mannose by the soluble transferases were similar to those formed by the particulate enzyme. Thus the major product formed from UDP-[3H]GlcNAc was GlcNAc-pyrophosphoryldolichol with small amounts of the disaccharide-lipid while the product formed from GDP-[14C]mannose was mannosylphosphoryldolichol.  相似文献   

8.
UDP-GlcNAc:Gal beta 1-3GalNAc-R beta 1,6-N-acetylglucosaminyltransferase (GlcNAc to GalNAc) (i.e., core 2 GlcNAc-T) is a developmentally regulated enzyme of the O-linked oligosaccharide biosynthesis pathway. We have developed a coupled-enzyme assay for core 2 GlcNAc-T that is approximately 100 times more sensitive than the standard assay using UDP-[3H]GlcNAc as a sugar donor. Core 2 GlcNAc-T reactions were performed using unlabeled UDP-GlcNAc donor and Gal beta 1-3GalNAc alpha-paranitrophenyl (pNp) as acceptor. The product, Gal beta 1-3(GlcNAc beta 1-6)GalNAc alpha-pNp was then further reacted with purified bovine beta 1-4Gal-T and UDP-[3H]Gal to produce Gal beta 1-3([3H]Gal beta 1-4GlcNAc beta 1-6) GalNAc alpha-pNp, which was separated on an Ultrahydrogel HPLC column. Approximately 10% of the available GlcNAc-terminating acceptor was substituted in the Gal-T reaction, allowing 1 pmol of product to be readily detected. The increased sensitivity of the coupled assay should facilitate studies of core 2 GlcNAc-T activity where material is limiting or specific activity is low.  相似文献   

9.
A novel glucuronyltransferase (GlcAT-1) has been detected in embryonic chicken brains. This enzyme catalyzes the biosynthesis in vitro of glucuronic acid containing glycolipids starting from neolactotetraosylceramide (nLcOse4Cer) and neolactohexaosylceramide (nLcOse6Cer). The activity is present primarily in the Golgi-rich membrane fraction and can be extracted (60%) from the membrane using a neutral detergent, Nonidet P-40, at pH 7.0. The detergent-solubilized GlcAT-1 is stable (70%) at -20 degrees C for at least 4 months. Both membrane-bound GlcAT-1 and solubilized GlcAT-1 show similar pH optima, 6.5-7.0, in HEPES buffer. The Km values were 15 and 200 microM with UDP-[14C] GlcA and nLcOse4Cer, respectively, when the detergent-solubilized supernatant fraction was used as enzyme source. The purified 14C radioactive product that comigrated with chemically characterized GlcA beta 1-3nLcOse4Cer (GlcA-nLc4) also yielded a positive immunostain with monoclonal antibody (human IgM-RI). The anomeric linkage was established as beta-linked GlcA to the terminal galactose of the substrate, as evidenced by 90-99% cleavage of the terminal [14C] GlcA by purified Helix pomatia and limpet glucuronidases. Permethylation studies of the radioactive product obtained from [6-3H]Gal beta 1-4LcOse3Cer and non-radioactive UDP-GlcA showed the presence of 2,4,6-tri-O-methylgalactose in the hydrolyzed enzymatic product. These studies established the structure of the biosynthesized product from nLcOse4Cer as GlcA beta 1-3Gal beta 1-4 GlcNAc beta 1-3Gal beta 1-4Glc-ceramide.  相似文献   

10.
The enzyme, phosphoenolpyruvate:uridine-5-diphospho-N-acetyl-2-amino-2-deoxyglucose-3-enolpyruvyltransferase, which catalyzes the transfer of enolpyruvate from phosphoenolpyruvate to uridine diphospho-N-acetylglucosamine with the liberation of Pi, was found to form a covalent intermediate with the enolpyruvate moiety. Radioactivity from [1-14-C]phosphoenolpyruvate in the forward reaction and from UDP-GlNAc-[1-14-C]enolpyruvate in the reverse reaction was incorporated into the enzyme and remained bound to the protein after precipitation with ammonium sulfate or treatment with sodium dodecyl sulfate and heat. This incorporation from UDP-GlcNAc-[1-14-C]enolpyruvate took place in the absence of Pi. When [32-P,1-14C]phosphoenolpyruvate was used, only 14-C appeared to be incorporated. In the forward reaction, the incorporation was contingent on the removal of UDP-GlcNAc from the transferase. Consistent with the formation of an enzyme-enolpyruvate intermediate, exchange of UDP-[6-3-H]GlcNAc with UDP-GlcNAc-enolpyruvate was observed in the absence of Pi. Nonstoichiometric incorporation of 3H from 3H2O into the product, UDP-GlcNAc-enolpyruvate, was observed and was shown to be due to a product isotope effect. Based on these observations, a mechanism of action for this enzyme is proposed which involves synchronous addition-elimination followed by a second addition-elimination step.  相似文献   

11.
Biosynthesis of chondroitin sulfate. Chain termination   总被引:4,自引:0,他引:4  
Incubation of chick embryo epiphyseal microsomal preparations with either UDP-[14C]GlcUA or UDP-[14C]-GalNAc plus exogenous chondroitin 6-sulfate resulted in the incorporation of either a single [14C]GlcUA or a [14C]GalNAc onto the nonreducing ends of the exogenous glycosaminoglycan. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and [14C]GalNAc. Incubations of the microsomal preparations with either UDP-[14C]GlcUA or UDP-GalN[3H]Ac without exogenous chondroitin 6-sulfate resulted in the addition of a single sugar onto the nonreducing end of endogenous chondroitin sulfate. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and GalN[3H]Ac in a molar ratio of approximately 1:1:3.5. Incubations of the microsomal preparations with both UDP-[14C]-GlcUA and UDP-GalN[3H]Ac together resulted in formation of [14C,3H]chondroitin chains added to the endogenous chondroitin sulfate. Degradation by chondroitinase ABC resulted in products with a molar ratio of [14C,3H]Di-OS to GalN[3H]Ac varying from approximately 1:1.5 to 1:3. The results of these experiments indicate that chondroitin 6-sulfate terminates at its nonreducing end in a mixture of GlcUA and GalNAc (some sulfated). GalNAc is somewhat more frequent as the terminal sugar and adds more readily to endogenous acceptors.  相似文献   

12.
We previously demonstrated a unique alpha-N-acetylgalactosaminyltransferase that transferred N-acetylgalactosamine (GalNAc) to the tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser (GlcA represents glucuronic acid), derived from the common glycosaminoglycan-protein linkage region, through an alpha1,4-linkage. In this study, we purified the enzyme from the serum-free culture medium of a human sarcoma cell line. Peptide sequence analysis of the purified enzyme revealed 100% identity to the multiple exostoses-like gene EXTL2/EXTR2, a member of the hereditary multiple exostoses (EXT) gene family of tumor suppressors. The expression of a soluble recombinant form of the protein produced an active enzyme, which transferred alpha-GalNAc from UDP-[3H]GalNAc to various acceptor substrates including GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser. Interestingly, the enzyme also catalyzed the transfer of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc to GlcAbeta1-3Galbeta1-O-naphthalenemethanol, which was the acceptor substrate for the previously described GlcNAc transferase I involved in the biosynthetic initiation of heparan sulfate. The GlcNAc transferase reaction product was sensitive to the action of heparitinase I, establishing the identity of the enzyme to be alpha1, 4-GlcNAc transferase. These results altogether indicate that EXTL2/EXTR2 encodes the alpha1,4-N-acetylhexosaminyltransferase that transfers GalNAc/GlcNAc to the tetrasaccharide representing the common glycosaminoglycan-protein linkage region and that is most likely the critical enzyme that determines and initiates the heparin/heparan sulfate synthesis, separating it from the chondroitin sulfate/dermatan sulfate synthesis.  相似文献   

13.
1. The activity of a particulate enzyme prepared from encysting cells of Acanthamoeba castellanii (Neff), previously shown to catalyze the incorporation of glucose from UDP-[14C]glucose into both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans, was stimulated several fold by glucose-6-phosphate and several related compounds. 2. Incorporation was observed when [14C]glucose-6-P was incubated with the particles in the presence of UDP-glucose. The results of product analysis by partial acid hydrolysis indicated that glucose-6-P stimulates the formation of both alkali-soluble and alkali-insoluble beta-(1 leads to 4) glucans from UDP-[14C]glucose and was itself incorporated into an alkali-insoluble beta-(1 leads to 4)glucan. 3. When particles incubated with UDP-[14C]glucose and glucose-6-P were reisolated and then reincubated with unlabeled UDP-glucose and glucose-6-P, a loss of counts from the alkali-soluble fraction was detected along with a corresponding rise in the radioactivity of the alkali-insoluble fraction. This suggests that the alkali-soluble beta-glucan was converted to an alkali-insoluble product and possibly may be an intermediate stage in cellulose synthesis.  相似文献   

14.
This study presents the first detailed examination by resonance Raman (RR) spectroscopy of the rates of solvent exchange for the C5 and C3 positions of the TPQ cofactor in several wild-type copper-containing amine oxidases and mutants of the amine oxidase from Hansenula polymorpha (HPAO). On the basis of crystal structure analysis and differing rates of C5 [double bond] O and C3 [bond] H exchange within the enzyme systems, but equally rapid rates of C5 [double bond] O and C3 [bond] H exchange in a TPQ model compound, it is proposed that these data can be used to determine the TPQ cofactor orientation within the active site of the resting enzyme. A rapid rate of C5 [double bond] O exchange (t(1/2) < 30 min) and a slow (t(1/2) = 6 h) to nonexistent rate of C3 [bond] H exchange was observed for wild-type HPAO, the amine oxidase from Arthrobacter globiformis, pea seedling amine oxidase at pH 7.1, and the E406Q mutant of HPAO. This pattern is ascribed to a productive TPQ orientation, with the C5 [double bond] O near the substrate-binding site and the C3 [bond] H near the Cu. In contrast, a slow rate of C5 [double bond] O exchange (t(1/2) = 1.6-3.3 h) coupled with a fast rate of C3 [bond] H exchange (t(1/2) < 30 min) was observed for the D319E and D319N catalytic base mutants of HPAO and for PSAO at pH 4.6 (t(1/2) = 4.5 h for C5 [double bond] O exchange). This pattern identifies a flipped orientation, involving 180 degrees rotation about the C alpha-C beta bond, which locates the C3 [bond] H near the substrate-binding site and the C5 double bond] O near the Cu. Finally, fast rates of both C5 [double bond] O and C3 [bond] H exchange (t(1/2) < 30 min) were observed for the amine oxidase from Escherichia coli and the N404A mutant of HPAO, suggesting a mobile cofactor, with multiple TPQ orientations between productive and flipped. These results demonstrate that opposing sides of the TPQ ring possess different degrees of solvent accessibility and that the rates of C5 [double bond] O and C3 [bond] H exchange can be used to predict the TPQ cofactor orientation in the resting forms of these enzymes.  相似文献   

15.
Effects of triiodothyronine treatment on (Na+,K+)-ATPase in the brain, liver, kidney, and skeletal muscle were studied in the rat. The number of (Na+,K+)-ATPase units in the particulate fractions obtained from deoxycholate-treated homogenates was estimated from the concentration of [3H]ouabain binding sites assayed with a labeled drug-displacement method. The concentration of [3H]ouabain binding sites was highest in the brain tissue, intermediate in the kidney, and relatively low in the liver and skeletal muscle. The affinity of the binding sites for ouabain was highest in the brain, intermediate in the skeletal muscle, low in the kidney, and lowest in the liver. Triiodothyronine treatment increased the [3H]ouabain binding site concentration in the liver, kidney, and skeletal muscle but failed to affect it in the brain. Affinity of the binding sites for ouabain was unchanged by the triiodothyronine treatment in all tissues studied. These data indicate that triiodothyronine treatment of rats results in an increased tissue concentration of (Na+,K+)-ATPase in the liver, kidney, and skeletal muscle, but not in the brain. These changes do not accompany marked changes in the characteristics of the enzyme.  相似文献   

16.
2-Deoxy-2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-D-[3H]mannose have been prepared by tritiation of the corresponding unlabeled 2-fluoro sugars. The tritiated 2-fluoro sugars are phosphorylated and activated by UTP and by GTP to yield UDP-2-deoxy-2-fluoro-D-[3H]glucose, UDP-2-deoxy-2-fluoro-D-[3H]mannose, GDP-2-deoxy-2-fluoro-D-[3H]glucose and GDP-2-deoxy-2-fluoro-D-[3H]mannose in both cell types. The nucleotide derivatives could also be labeled in the nucleotide moiety by feeding the cells with [14C]uridine or [14C]guanosine in the presence of unlabeled 2-fluoro sugar. No evidence was obtained for metabolic steps in which the six-carbon chain of 2-fluoro sugars was not preserved. No epimerisation of the label to 2-deoxy-2-fluoro-D-[3H]galactose could be observed by radioactive gas-liquid chromatography of the enzymatic cleavage products of the different 2-fluoro sugar metabolites isolated from either cell type. Yeast and chick embryo cells both incorporate 2-deoxy-2-fluoro-D-[3H]glucose and 2-deoxy-2-fluoro-D-[3H]mannose specifically into glycoproteins, although this incorporation is very low when compared to the incorporation of 2-deoxy-D-[3H]glucose.  相似文献   

17.
Two glycosaminoglycan-protein linkage tetrasaccharide-serine compounds, GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-O-Ser and GlcAβ1-3Gal(4-O-sulfate)β1-3Galβ1-4Xylβ1-O-Ser, were tested as hexosamine acceptors, using UDP-[3H]GlcNAc and UDP-[3H]GalNAc as sugar donors, and solubilized mouse mastocytoma microsomes as enzyme source. The nonsulfated Ser-tetrasaccharide was found to function as an acceptor for a GalNAc residue, whereas the Ser-tetrasaccharide containing a sulfated galactose unit was inactive. Characterization of the radio-labelled product by digestion with α-N-acetylgalactosaminidase and β-N-acetylhexosaminidase revealed that the [3H]GalNAc unit was α-linked, as in the product previously synthesized using serum enzymes, and not β-linked as found in the chondroitin sulfate polymer. Heparan sulfate/heparin biosynthesis could not be primed by either of the two linkage Ser-tetrasaccharides, since no transfer of [3H]GlcNAc from UDP-[3H]GlcNAc could be detected. By contrast, transfer of a [3H]GlcNAc unit to a [GlcAβ1-4GlcNAcα1-4]2-GlcAβ1-4-aMan hexasaccharide acceptor used to assay the GlcNAc transferase involved in chain elongation, was readily detected. These results are in agreement with the recent proposal that two different N-acetylglucosaminyl transferases catalyse the biosynthesis of heparan sulfate. Although the mastocytoma system contains both the heparan sulfate/heparin and chondroitin sulfate biosynthetic enzymes the Ser-tetrasaccharides do not seem to fulfil the requirements to serve as acceptors for the first HexNAc transfer reactions involved in the formation of these polysaccharides. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

18.
One of the earliest signs of endometrial preparation for blastocyst implantation is a localized increase in capillary permeability, an event that is essentially inflammatory in character and thought to be a prerequisite for subsequent decidual tissue formation. Platelet-activating factor (PAF), chemically identified as 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, is a very potent vasoactive compound that recently has been implicated in the implantation process. In the present study, PAF binding sites are characterized in the rabbit uterus. A specific, reversible, saturable, and thermally labile binding of [3H]PAF to uterine membranes has been demonstrated, exhibiting multiple binding sites. The equilibrium dissociation constant (Kd) of the higher affinity binding site (type 1) was 3.6 +/- 0.4 nM (mean +/- SD) with a binding capacity (Bmax) of 3.4 +/- 1.6 pmol/mg protein. The second (lower affinity) binding site (type 2) had an apparent Kd of 114.6 +/- 13.5 nM and a Bmax of 164.3 +/- 17.6 pmol/mg membrane protein, under the conditions of maximal [3H]PAF binding, 25 degrees C, 150 min. Incubations at 4 degrees C for up to 3 h yielded only 30% of the Bmax observed at 25 degrees C. In crude and purified endometrial membrane preparations in which the PAF binding was predominantly located, the affinity of the binding for PAF was significantly higher than for the whole uterus, giving Kds of 1.5 +/- 0.8 and 0.8 +/- 0.5 nM; these latter values were not significantly different. However, the Bmax values of 3.9 +/- 0.9 pmol/mg protein and 376.8 +/- 163.3 fmol/mg protein for the two endometrial preparations, respectively, did differ significantly. Kinetic analysis at 25 degrees C resulted in a calculated Kd of 3.28 +/- 1.14 nM, which did not differ from the value for for the whole uterus at the same temperature, but was greater than for the endometrial preparations. Using 4 nM [3H]PAF to selectively label only the type 1 binding sites, the relative potencies of PAF and its antagonists in displacing [3H]PAF were lyso-PAF greater than CV3988 greater than PAF greater than U66985 greater than A02405 greater than BN52021 greater than U66982. The antagonists SRI 63,441 and L652,731 were ineffective in displacing [3H]PAF at up to 5000-fold molar excess of [3H]PAF. [3H]Lyso-PAF binding at 4 nM was displaceable by PAF. All cations tested, i.e. Ca2+, Mg2+, K+, Na+, and Li+, inhibited [3H]PAF binding. Serine hydrolase inhibitors, diisopropylfluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF), inhibited binding, but bacitracin, leupeptin, and antipain stabilized it.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Particulate membrane preparations from K-562 [human CML (chronic-myelogenous-leukaemia)-derived] cells catalyse the transfer of [3H]galactose from UDP-[3H]-galactose and [3H]N-acetylglucosamine from UDP-[3H]N-acetylglucosamine into an endogenous product that on digestion with Pronase yields long-chain glycopeptides (mol.wt. 7000--10 000) called 'erythroglycan'. Incorporation of either labelled sugar increased up to 60 min of incubation time. The labelled erythroglycan was isolated by chromatography on Sephadex G-50 and characterized by digestion with endo-beta-galactosidase from Escherichia freundii, followed by analysis on Bio-Gel P-2 and paper chromatography. This digestion gave the following four products: (1) a disaccharide with the sequence beta GlcNAc-beta Gal; (2) a trisaccharide with the sequence betaGal-betaGlcNAc-beta Gal; (3) a larger oligosaccharide containing galactose and N-acetylglucosamine; and (4) a putative protein-linkage region.  相似文献   

20.
The neuropeptide substance P (SP), which has been demonstrated to bind specifically to human blood T lymphocytes and to stimulate their uptake of [3H]thymidine and [3H]leucine, now is shown to bind stereospecifically to cultured human lymphoblasts of the IM-9 line. The specific binding of [3H]SP by IM-9 lymphoblasts increases linearly with the concentration of IM-9 lymphoblasts, achieves a plateau after approximately 15 to 20 min at 4 degrees C and 4 to 6 min at 37 degrees C, and is rapidly reversible at both 4 degrees C and 37 degrees C. The binding of [3H]SP at steady-state conditions demonstrates a dissociation constant (KD) of 0.65 +/- 0.19 nM (mean +/- SD, n = 5) and 22,641 +/- 6143 receptors per IM-9 lymphoblast. Maximal specific binding of [3H]SP to IM-9 lymphoblasts is observed at pH 7.4 and is dependent on the presence of Mg2+, but not Ca2+, in the medium. The peptide structural determinants of the inhibition of binding of [3H]SP to IM-9 lymphoblasts by substituent peptides and homologs of SP indicate that the receptors recognize predominantly the carboxy-terminal portion of SP. The characteristics of the interaction of SP with IM-9 lymphoblasts suggests a receptor-directed mechanism by which neuropeptides may modulate specifically the contributions of lymphocytes to immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号