首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To understand the day-to-day pathophysiology of impaired muscle glycogen storage in type 2 diabetes, glycogen concentrations were measured before and after the consumption of sequential mixed meals (breakfast: 190.5 g carbohydrate, 41.0 g fat, 28.8 g protein, 1253 kcal; lunch: 203.3 g carbohydrate, 48.1 g fat, 44.0 g protein, 1497.5 kcal) by use of natural abundance (13)C magnetic resonance spectroscopy. Subjects with diet-controlled type 2 diabetes (n = 9) and age- and body mass index-matched nondiabetic controls (n = 9) were studied. Mean fasting gastrocnemius glycogen concentration was significantly lower in the diabetic group (57.1 +/- 3.6 vs. 68.9 +/- 4.1 mmol/l; P < 0.05). After the first meal, mean glycogen concentration in the control group rose significantly from basal (97.1 +/- 7.0 mmol/l at 240 min; P = 0.005). After the second meal, the high level of muscle glycogen concentration in the control group was maintained, with a further rise to 108.0 +/- 11.6 mmol/l by 480 min. In the diabetic group, the postprandial rise was markedly lower than that of the control group (65.9 +/- 5.2 mmol/l at 240 min, P < 0.005, and 70.8 +/- 6.7 mmol/l at 480 min, P = 0.01) despite considerably greater serum insulin levels (752.0 +/- 109.0 vs. 372.3 +/- 78.2 pmol/l at 300 min, P = 0.013). This was associated with a significantly greater postprandial hyperglycemia (10.8 +/- 1.3 vs. 5.3 +/- 0.2 mmol/l at 240 min, P < 0.005). Basal muscle glycogen concentration correlated inversely with fasting blood glucose (r = -0.55, P < 0.02) and fasting serum insulin (r = -0.57, P < 0.02). The increment in muscle glycogen correlated with initial increment in serum insulin only in the control group (r = 0.87, P < 0.002). This study quantitates for the first time the subnormal basal muscle glycogen concentration and the inadequate glycogen storage after meals in type 2 diabetes.  相似文献   

2.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

3.
Plasma apolipoprotein A-IV (apoA-IV) levels are found elevated in hypertriglyceridemic patients. However, the relationship between plasma apoA-IV level and postprandial lipemia is not well known and remains to be elucidated. Thus, our objective was to study the relationship between plasma apoA-IV and postprandial TG after an oral fat load test (OFLT). Plasma apoA-IV was measured at fast and during an OFLT in 16 normotriglyceridemic, normoglucose-tolerant android obese subjects (BMI = 34.6 +/- 2.9 kg/m(2)) and 30 normal weight controls (BMI = 22.2 +/- 2.3 kg/m(2)). In spite of not statistically different fasting plasma TG levels in controls and obese patients, the former group showed an altered TG response after OFLT, featuring increased nonchylomicron TG area under the curve (AUC) compared with controls (516 +/- 138 vs. 426 +/- 119 mmol/l x min, P < 0.05). As compared to controls, obese patients showed increased apoA-IV levels both at fast (138.5 +/- 22.4 vs. 124.0 +/- 22.8 mg/l, P < 0.05) and during the OFLT (apoA-IV AUC: 79,833 +/- 14,281 vs. 68,176 +/- 17,463 mg/l x min, P < 0.05). Among the whole population studied, as among the control and obese subgroups, fasting plasma apoA-IV correlated significantly with AUC of plasma TG (r = 0.60, P < 0.001), AUC of chymomicron TG (r = 0.45, P < 0.01), and AUC of nonchylomicron TG (r = 0.62, P < 0.001). In the multivariate analysis, fasting apoA-IV level constituted an independent and highly significant determinant of AUC of plasma TG, AUC of chymomicron TG, AUC of nonchylomicron TG, and incremental AUC of plasma TG. In conclusion, we show a strong link between fasting apoA-IV and postprandial TG metabolism. Plasma fasting apoA-IV is shown to be a good marker of TG response after an OFLT, providing additional information on post-load TG response in conjunction with other known factors such as fasting TGs.  相似文献   

4.
The aim of this study was to evaluate the contribution of insulin processing to the improved meal-related B-cell function previously shown with the DPP-4 inhibitor vildagliptin. Fifty-five patients with type 2 diabetes (56.5+/-1.5 years; BMI=29.6+/-0.5 kg/m(2); FPG=9.9+/-0.2 mmol/l; HbA1c=7.7+/-0.1 %) were studied: 29 patients were treated with vildagliptin and 26 patients with placebo, both added to an ongoing metformin regimen (1.5-3.0 g/day). A standardized breakfast was given at baseline and after 52 weeks of treatment, and proinsulin related to insulin secretion was measured with C-peptide in the fasting and postprandial (over 4 h post-meal) states to evaluate B-cell function. The between-treatment difference (vildagliptin-placebo) in mean change from baseline in fasting proinsulin to C-peptide ratio (fastP/C) was -0.007+/-0.009 (p=0.052). Following the standard breakfast, 52 weeks of treatment with vildagliptin significantly decreased the dynamic proinsulin to C-peptide ratio (dynP/C) relative to placebo by 0.010+/-0.008 (p=0.037). Importantly, when the P/C was expressed in relation to the glucose stimulus (i.e., the fasting glucose and glucose AUC(0-240 min), respectively), the P/C relative to glucose was significantly reduced with vildagliptin vs. placebo, both in the fasting state (p=0.023) and postprandially (p=0.004). In conclusion, a more efficient B-cell insulin processing provides further evidence that vildagliptin treatment ameliorates abnormal B-cell function in patients with type 2 diabetes.  相似文献   

5.
Postprandial lipoprotein metabolism is impaired in hypertriglyceridemia. It is unknown how and to what extent atorvastatin affects postprandial lipoprotein metabolism in hypertriglyceridemic patients. We evaluated the effect of 4 weeks of atorvastatin therapy (10 mg/day) on postprandial lipoprotein metabolism in 10 hypertriglyceridemic patients (age, 40 +/- 3 years; body mass index, 27 +/- 1 kg/m2; cholesterol, 5.74 +/- 0.34 mmol/l; triglycerides, 3.90 +/- 0.66 mmol/l; HDL-cholesterol, 0.85 +/- 0.05 mmol/l; and LDL-cholesterol, 3.18 +/- 0.23 mmol/l). Patients were randomized to be studied with or without atorvastatin therapy. Postprandial lipoprotein metabolism was evaluated with a standardized oral fat load. Plasma was obtained every 2 h for 14 h. Large triglyceride-rich lipoproteins (TRLs) (containing chylomicrons) and small TRLs (containing chylomicron remnants) were isolated by ultracentrifugation, and cholesterol, triglyceride, apolipoprotein B-100 (apoB-100), apoB-48, apoC-III, and retinyl-palmitate concentrations were determined. Atorvastatin significantly (P < 0.01) decreased fasting cholesterol (-27%), triglycerides (-43%), LDL-cholesterol (-28%), and apoB-100 (-31%), and increased HDL-cholesterol (+19%). Incremental area under the curve (AUC) significantly (P < 0.05) decreased for large TRL-cholesterol, -triglycerides, and -retinyl-palmitate, while none of the small TRL parameters changed. These findings contrast with the results in normolipidemic subjects, in which atorvastatin decreased the AUC for chylomicron remnants (small TRLs) but not for chylomicrons (large TRLs). We conclude that atorvastatin improves postprandial lipoprotein metabolism in addition to decreasing fasting lipid levels in hypertriglyceridemia. Such changes would be expected to improve the atherogenic profile.  相似文献   

6.
Maintaining hyperinsulinemia ( approximately 160 mU/l) during steady-state hypercarnitinemia ( approximately 550 mumol/l) increases skeletal muscle total carnitine (TC) content by approximately 15% within 5 h. The aim of the present study was to further examine the relationship between serum insulin concentration and skeletal muscle carnitine accumulation by attempting to identify the serum insulin concentration at which this stimulatory effect of insulin on carnitine retention becomes apparent. On four randomized experimental visits, eight healthy men (body mass index 23.8 +/- 0.9 kg/m(2)) underwent a 6-h euglycemic insulin clamp of 5, 30, 55, or 105 mU x m(-2) x min(-1) accompanied by a 5-h iv infusion of l-carnitine (15 mg/kg bolus followed by 10 mg x kg(-1) x h(-1)). The clamps produced steady-state serum insulin concentrations of 10.1 +/- 0.5, 48.8 +/- 1.0, 88.9 +/- 2.8, and 173.9 +/- 6.5 mU/l, respectively. During l-carnitine infusion, plasma TC concentration remained above 450 mumol/l during all four visits. However, there was a significant treatment effect of insulin (P < 0.001), such that by the end of infusion the plasma TC concentration in the 55- and 105-mU clamps was lower than that seen in the 5- (P < 0.05 and P < 0.01, respectively) and 30-mU (P < 0.01) clamps. The findings demonstrate that only high circulating serum insulin concentrations (> or =90 mU/l) are capable of stimulating skeletal muscle carnitine accumulation. This is of relevance to athletes, and the treatment of obesity and type 2 diabetes, where increasing skeletal muscle carnitine content may be used as tool to modify skeletal muscle energy metabolism.  相似文献   

7.
The postprandial excursion of plasma triglyceride (TG) concentration is greater in men than in women. In this study, the disposition of dietary fat was examined in lean healthy men and women (n = 8/group) in either the overnight-fasted or fed (4.5 h after breakfast) states. A [14C]oleate tracer was incorporated into a test meal, providing 30% of total daily energy requirements. After ingestion of the test meal, measures of arteriovenous differences in TG and 14C across the leg were combined with needle biopsies of skeletal muscle and adipose tissue and respiratory gas collections to define the role of skeletal muscle in the clearance of dietary fat. The postprandial plasma TG and 14C tracer excursions were lower (P = 0.04) in women than in men in the overnight-fasted and fed states. Women, however, had significantly greater limb uptake of total TG compared with men on both the fasted (3,849 +/- 846 vs. 528 +/- 221 total micro mol over 6 h) and fed (4,847 +/- 979 vs. 1,571 +/- 334 total micromol over 6 h) days. This was also true for meal-derived 14C lipid uptake. 14C content of skeletal muscle tissue (micro Ci/g tissue) was significantly greater in women than in men 6 h after ingestion of the test meal. In contrast, 14C content of adipose tissue was not significantly different between men and women at 6 h. The main effect of nutritional state, fed vs. fasted, was to increase the postmeal glucose (P = 0.01) excursion (increase from baseline) and decrease the postmeal TG excursion (P = 0.02). These results support the notion that enhanced skeletal muscle clearance of lipoprotein TG in women contributes to their reduced postprandial TG excursion. Questions remain as to the mechanisms causing these sex-based differences in skeletal muscle TG uptake and metabolism. Furthermore, nutritional state can significantly impact postprandial metabolism in both men and women.  相似文献   

8.
We studied the effect of the acute administration of gliclazide at 160 mg on insulin release during hyperglycaemic clamps in 12 type 2 diabetes patients, age 50 +/- 9.0 years, diabetes duration 5.5 +/- 4.8 years, fasting blood glucose 9.6 +/- 2.1 mmol/L (means +/- SD). After a 210 min of hyperinsulinaemic euglycaemic clamp (blood glucose 4.6 +/- 0.14mmol/L), gliclazide or placebo (randomised, double-blind, cross-over) was administered; 60 minutes later, a hyperglycaemic clamp (4hr) at 8mmol/L was started. Plasma C-peptide levels increased significantly after the administration of gliclazide (increment 0.17 +/- 0.15 vs. 0.04 +/- 0.07 nmol/L, p = 0.024) before the clamp. After the start of the hyperglycaemic clamp, the areas under the curve (AUC) for insulin and C-peptide did not differ from 0-10 min (first phase) with gliclazide. However, second-phase insulin release (30-240 min) was markedly enhanced by gliclazide. AUC plasma insulin (30 to 240 min) was statistically significantly higher after gliclazide (12.3 +/- 13.9 vs. -0.56 +/- 9.4 nmol/L x 210 min, p = 0.022); similarly, AUC plasma C-peptide (30 to 240 min) was also higher: 128 +/- 62 vs. 63 +/- 50 nmol/L x 210 min, p = 0.002). In conclusion, in long-standing type 2 diabetes the acute administration of gliclazide significantly enhances second phase insulin release at a moderately elevated blood glucose level. In contrast to previous findings in mildly diabetic subjects, these 12 type 2 diabetes patients who had an inconsiderable first phase insulin release on the placebo day, only showed an insignificant increase in first phase with gliclazide.  相似文献   

9.
Cigarette smoking is a leading cause of many adverse health consequences. Chronic nicotine exposure leads to insulin resistance and may increase the risk of developing non-insulin-dependent diabetes mellitus in young otherwise healthy smokers. To evaluate smoking-induced effects on carbohydrate metabolism, we studied muscle glycogen recovery from exercise in a young healthy population of smokers. The study used 31P-13C NMR spectroscopy to compare muscle glycogen and glucose 6-phosphate levels during recovery in exercised gastrocnemius muscles of randomized cohorts of healthy male smokers (S) and controls (C). Data for the two groups were as follows: S, > or =20 cigarettes/day (n = 8), 24 +/- 2 yr, 173 +/- 3 cm, 70 +/- 4 kg and age- and weight-matched nonsmoking C (n = 10), 23 +/- 1 yr, 175 +/- 3 cm, 67 +/- 3 kg. Subjects performed single-leg toe raises to deplete glycogen to approximately 20 mmol/l, and glycogen resynthesis was measured during the first 4 h of recovery. Plasma samples were assayed for glucose and insulin at rest and during recovery. Test subjects were recruited from the general community surrounding Yale University. Glycogen was depleted to similar levels in the two groups [23.5 +/- 1.2 (S) and 19.1 +/- 1.3 (C) mmol/l]. During the 1st h of recovery, glycogen synthesis rates were similar [13.8 +/- 1.1 (S) and 15.3 +/- 1.3 (C) mmol x l-1 x h-1]. Between hours 1 and 4, glycogen synthesis was impaired in smokers [0.8 +/- 0.2 (S) and 4.5 +/- 0.5 (C) mmol x l-1 x h-1, P = 0.0002] compared with controls. Glucose 6-phosphate was reduced in smokers during hours 1-4 [0.105 +/- 0.006 (S) and 0.217 +/- 0.019 (C) mmol/l, P = 0.0212]. We conclude that cigarette smoking impairs the insulin-dependent portion of muscle recovery from glycogen-depleting exercise. This impairment likely results from a reduction in glucose uptake.  相似文献   

10.
Prior exercise decreases postprandial plasma triacylglycerol (TG) concentrations, possibly through changes to skeletal muscle TG extraction. We measured postprandial substrate extraction across the leg in eight normolipidemic men aged 21-46 yr. On the afternoon preceding one trial, subjects ran for 2 h at 64 +/- 1% of maximal oxygen uptake (exercise); before the control trial, subjects had refrained from exercise. Samples of femoral arterial and venous blood were obtained, and leg blood flow was measured in the fasting state and for 6 h after a meal (1.2 g fat, 1.2 g carbohydrate/kg body mass). Prior exercise increased time averaged postprandial TG clearance across the leg (total TG: control, 0.079 +/- 0.014 ml.100 ml tissue(-1).min(-1) ; exercise, 0.158 +/- 0.023 ml.100 ml tissue(-1).min(-1), P <0.01), particularly in the chylomicron fraction, so that absolute TG uptake was maintained despite lower plasma TG concentrations (control, 1.53 +/- 0.13 mmol/l; exercise, 1.01 +/- 0.16 mmol/l, P < 0.001). Prior exercise increased postprandial leg blood flow and glucose uptake (both P < 0.05). Mechanisms other than increased leg TG uptake must account for the effect of prior exercise on postprandial lipemia.  相似文献   

11.
In the present study, we tested the hypothesis that a carbohydrate-protein (CHO-Pro) supplement would be more effective in the replenishment of muscle glycogen after exercise compared with a carbohydrate supplement of equal carbohydrate content (LCHO) or caloric equivalency (HCHO). After 2.5 +/- 0.1 h of intense cycling to deplete the muscle glycogen stores, subjects (n = 7) received, using a rank-ordered design, a CHO-Pro (80 g CHO, 28 g Pro, 6 g fat), LCHO (80 g CHO, 6 g fat), or HCHO (108 g CHO, 6 g fat) supplement immediately after exercise (10 min) and 2 h postexercise. Before exercise and during 4 h of recovery, muscle glycogen of the vastus lateralis was determined periodically by nuclear magnetic resonance spectroscopy. Exercise significantly reduced the muscle glycogen stores (final concentrations: 40.9 +/- 5.9 mmol/l CHO-Pro, 41.9 +/- 5.7 mmol/l HCHO, 40.7 +/- 5.0 mmol/l LCHO). After 240 min of recovery, muscle glycogen was significantly greater for the CHO-Pro treatment (88.8 +/- 4.4 mmol/l) when compared with the LCHO (70.0 +/- 4.0 mmol/l; P = 0.004) and HCHO (75.5 +/- 2.8 mmol/l; P = 0.013) treatments. Glycogen storage did not differ significantly between the LCHO and HCHO treatments. There were no significant differences in the plasma insulin responses among treatments, although plasma glucose was significantly lower during the CHO-Pro treatment. These results suggest that a CHO-Pro supplement is more effective for the rapid replenishment of muscle glycogen after exercise than a CHO supplement of equal CHO or caloric content.  相似文献   

12.
Knowledge of the reproducibility of oral fat tolerance tests is important for experimental design and data interpretation. In this study, seven normolipidaemic men underwent two fat tolerance tests (blood taken fasting and for six hours after a meal containing 1.2 g fat, 1.2 g carbohydrate per kg body mass) with an interval of one week. Eleven normolipidaemic women underwent two fat tolerance tests--one during the follicular phase of the menstrual cycle, the other during the mid-luteal phase. Dietary intake was controlled for two days and subjects refrained from exercise for three days before each test. There was no significant difference in postprandial triglyceride responses between the two tests in the men (10.20 +/- 3.45 mmol/l.h vs. 9.68 +/- 2.77 mmol/l.h, NS) (mean +/- SD); intraclass correlation coefficient between the two tests was 0.93, and within-subject coefficient of variation was 10.1 %. In the women, the postprandial triglyceride response was lower in the luteal phase (6.75 +/- 1.83 mmol/l.h) than in the follicular phase (8.36 +/- 3.71 mmol/l.h) (p = 0.05), intraclass correlation was 0.65 and within-subject coefficient of variation was 23.2 %. These results suggest that, with adequate control of preceding lifestyle, reproducibility of postprandial triglyceride responses is high in men, but menstrual phase should be taken into consideration when studying these responses in women.  相似文献   

13.
We examined the effects of exogenous and endogenous GIP on plasma triglyceride levels in rats, pretreated with a fat-enriched diet, during intraduodenal infusion of a lipid test meal (Lipomul, 8 ml/h). Following the fat load the plasma triglyceride levels increased nearly linearly from a fasting value of 0.621 +/- 0.031 mmol/l to 3.32 +/- 0.403 mmol/l at 150 min. Simultaneously, the plasma GIP levels rose from 47.1 +/- 5.1 at fasting to a peak value of 268.4 +/- 32.2 pmol/l at 120 min. When porcine GIP was infused intravenously during the fat load, the plasma triglyceride increments were significantly smaller (control 1.64 +/- 0.264 mmol/l versus 0.949 +/- 0.114 mmol/l during GIP infusion at 60 min; p less than 0.002). GIP infusion in the absence of the fat load did not change fasting triglyceride levels. The effect of endogenous GIP was investigated by neutralization of GIP by injection of GIP antiserum (0.3 ml). Rats pretreated with the antiserum exhibited a significantly greater triglyceride increment late in the time course of the fat load. These data demonstrate that exogenous and endogenous GIP are able to lower the plasma triglyceride response to a fat load. Both, inhibition of fat absorption or stimulation of triglyceride uptake by peripheral tissues may be responsible for the GIP effects. The gut peptide GIP seems to represent an important hormonal regulator of postprandial triglyceride response.  相似文献   

14.
The carrier frequency of Asn291Ser polymorphism of the lipoprotein lipase (LPL) gene is 4;-6% in the Western population. Heterozygotes are prone to fasting hypertriglyceridemia and low high density lipoprotein (HDL) cholesterol concentrations especially when secondary factors are superimposed on the genetic defect. We studied the LPL Asn291Ser gene variant as a modulator of postprandial lipemia in heterozygote carriers. Ten normolipidemic carriers were compared to ten control subjects, who were selected to have similar age, sex, BMI, and apolipoprotein (apo)E-phenotype. The subjects were given a lipid-rich mixed meal and their insulin sensitivity was determined by euglycemic hyperinsulinemic clamp technique. The two groups had comparable fasting triglycerides and glucose utilization rate during insulin infusion, but fasting HDL cholesterol was lower in carriers (1.25 +/- 0.05 mmol/L) than in the control subjects (1. 53 +/- 0.06 mmol/L, P = 0.005). In the postprandial state the most pronounced differences were found in the very low density lipoprotein 1 (VLDL1) fraction, where the carriers displayed higher responses of apoB-48 area under the curve (AUC), apoB-100 AUC, triglyceride AUC, and retinyl ester AUC than the control subjects. The most marked differences in apoB-48 and apoB-100 concentrations were observed late in the postprandial period (9 and 12 h), demonstrating delayed clearance of triglyceride-rich particles of both hepatic and intestinal origin. Postprandially, the carriers exhibited enrichment of triglycerides in HDL fraction. Thus, in normolipidemic carriers the LPL Asn291Ser gene variant delays postprandial triglyceride, apoB-48, apoB-100, and retinyl ester metabolism in VLDL1 fraction and alters postprandial HDL composition compared to matched non-carriers.  相似文献   

15.
We assessed the hypothesis that the epinephrine surge present during sepsis accelerates aerobic glycolysis and lactate production by increasing activity of skeletal muscle Na(+)-K(+)-ATPase. Healthy volunteers received an intravenous bolus of endotoxin or placebo in a randomized order on two different days. Endotoxemia induced a response resembling sepsis. Endotoxemia increased plasma epinephrine to a maximum at t = 2 h of 0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/l (P < 0.05, n = 6-7). Endotoxemia reduced plasma K(+) reaching a nadir at t = 5 h of 3.3 +/- 0.1 vs. 3.8 +/- 0.1 mmol/l (P < 0.01, n = 6-7), followed by an increase to placebo level at t = 7-8 h. During the declining plasma K(+), a relative accumulation of K(+) was seen reaching a maximum at t = 6 h of 8.7 +/- 3.8 mmol/leg (P < 0.05). Plasma lactate increased to a maximum at t = 1 h of 2.5 +/- 0.5 vs. 0.9 +/- 0.1 mmol/l (P < 0.05, n = 8) in association with increased release of lactate from the legs. These changes were not associated with hypoperfusion or hypoxia. During the first 24 h after endotoxin infusion, renal K(+) excretion was 27 +/- 7 mmol, i.e., 58% higher than after placebo. Combination of the well-known stimulatory effect of catecholamines on skeletal muscle Na(+)-K(+)-ATPase activity, with the present confirmation of an expected Na(+)-K(+)- ATPase-induced decline in plasma K(+), suggests that the increased lactate release was due to increased Na(+)-K(+)-ATPase activity, supporting our hypothesis. Thus increased lactate levels in acutely and severely ill patients should not be managed only from the point of view that it reflects hypoxia.  相似文献   

16.
We aimed to investigate how assimilation of nutrients affects the postprandial responses of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) and to evaluate the effect of pancreatic enzyme substitution (PES) on insulin secretion in patients with chronic pancreatitis (CP) and pancreatic exocrine insufficiency (PEI). Eight male patients with CP and PEI were studied. Blood was sampled frequently on two separate days after ingestion of a liquid meal with and without PES, respectively. Eight healthy male subjects served as a control group. beta-Cell responsiveness was estimated as changes in insulin secretion rates in response to changes in postprandial plasma glucose (PG). There was no difference in the PG incremental area under curve (AUC) for patients with and without PES [406 +/- 100 vs. 425 +/- 80 mM.4 h (mean +/- SE), P = 0.8]. The response of total GLP-1 was higher after PES (AUC: 7.8 +/- 1.2 vs. 5.3 +/- 0.6 nM.4 h, P = 0.01), as was the response of total GIP (AUC: 32.7 +/- 7.5 vs. 21.1 +/- 8.3 nM.4 h, P = 0.01). Concurrently, both plasma insulin, plasma C-peptide, and total insulin secretion increased after PES (AUC: 17.7 +/- 4.2 vs. 13.6 +/- 2.9 nM.4 h, P = 0.02; 237 +/- 31.4 vs. 200 +/- 27.4 nM.4 h, P = 0.005; and 595 +/- 82 vs. 497 +/- 80 pmol.kg(-1).4 h, P = 0.01, respectively). beta-Cell responsiveness to glucose was not significantly different on the two study days for patients with CP. These results suggest that the secretion of GLP-1 and GIP is under influence of the digestion and absorption of nutrients in the small intestine and that PES increases insulin secretion.  相似文献   

17.
Disturbances in skeletal muscle lipid metabolism may precede or contribute to the development of whole body insulin resistance. In this study, we examined fasting and postprandial skeletal muscle fatty acid (FA) handling in insulin resistant (IR) men. Thirty men with the metabolic syndrome (MetS) (National Cholesterol Education Program-Adult Treatment Panel III) were included in this sub-study to the LIPGENE study, and divided in two groups (IR and control) based on the median of insulin sensitivity (S(I) = 2.06 (mU/l(-1))·min(-1)·10(-4)). Fasting and postprandial skeletal muscle FA handling were examined by combining the forearm balance technique with stable isotopes of palmitate. [(2)H(2)]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free FAs (FFAs) in the circulation and [U-(13)C]-palmitate was incorporated in a high-fat mixed meal (2.6 MJ, 61 E% fat) to label chylomicron-TAG. Muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid (PL) content, their fractional synthetic rates (FSRs) and degree of saturation, as well as messenger RNA (mRNA) expression of genes involved in lipid metabolism. In the first 2 h after meal consumption, forearm muscle [(2)H(2)]-labeled TAG extraction was higher in IR vs. control (P = 0.05). Fasting percentage saturation of muscle DAG was higher in IR vs. control (P = 0.016). No differences were observed for intramuscular TAG, DAG, FFA, and PL content, FSR, and muscle mRNA expression. In conclusion, increased muscle (hepatically derived) TAG extraction during postprandial conditions and increased saturation of intramuscular DAG are associated with insulin resistance, suggesting that disturbances in skeletal muscle FA handling could play a role in the development of whole body insulin resistance and type 2 diabetes.  相似文献   

18.
This study compared muscle glycogen recovery after depletion of approximately 50 mmol/l (DeltaGly) from normal (Nor) resting levels (63.2 +/- 2.8 mmol/l) with recovery after depletion of approximately 50 mmol/l from a glycogen-loaded (GL) state (99.3 +/- 4.0 mmol/l) in 12 healthy, untrained subjects (5 men, 7 women). To glycogen load, a 7-day carbohydrate-loading protocol increased muscle glycogen 1.6 +/- 0.2-fold (P < or = 0.01). GL subjects then performed plantar flexion (single-leg toe raises) at 50 +/- 3% of maximum voluntary contraction (MVC) to yield DeltaGly = 48.0 +/- 1.3 mmol/l. The Nor trial, performed on a separate occasion, yielded DeltaGly = 47.5 +/- 4.5 mmol/l. Interleaved natural abundance (13)C-(31)P-NMR spectra were acquired and quantified before exercise and during 5 h of recovery immediately after exercise. During the initial 15 min after exercise, glycogen recovery in the GL trial was rapid (32.9 +/- 8.9 mmol. l(-1). h(-1)) compared with the Nor trial (15.9 +/- 6.9 mmol. l(-1). h(-1)). During the next 45 min, GL glycogen synthesis was not as rapid as in the Nor trial (0.9 +/- 2.5 mmol. l(-1). h(-1) for GL; 14.7 +/- 3.0 mmol. l(-1). h(-1) for Nor; P < or = 0.005) despite similar glucose 6-phosphate levels. During extended recovery (60-300 min), reduced GL recovery rates continued (1.3 +/- 0.5 mmol. l(-1). h(-1) for GL; 3.9 +/- 0.3 mmol. l(-1). h(-1) for Nor; P < or = 0.001). We conclude that glycogen recovery from heavy exercise is controlled primarily by the remaining postexercise glycogen concentration, with only a transient synthesis period when glycogen levels are not severely reduced.  相似文献   

19.
The impact of a 6-mo body-weight-supported treadmill training program on glucose homeostasis and muscle metabolic characteristics was investigated. Nine individuals (31 +/- 3 yr, 8.1 +/- 2.5 yr postinjury; means +/- SE) with incomplete spinal cord injury trained three times weekly for a total of 6 mo. Training session duration and intensity (velocity) increased by 54 +/- 10% (P < 0.01) and 135 +/- 20%, respectively. Muscle biopsies and a modified glucose tolerance test (100 g glucose with [U-(13)C]glucose) were performed before (Pre) and after training (Post). Training resulted in a reduction in area under the curve of glucose x time (-15 +/- 4%) and insulin x time (-33 +/- 8%; both P < 0.05). Oxidation of exogenous (ingested) glucose increased as a result of training (Pre = 4.4 +/- 0.7 g/h, Post = 7.4 +/- 0.6 g/h; P < 0.05), as did oxidation of endogenous (liver) glucose (Pre = 3.8 +/- 0.3 g/h, Post = 5.2 +/- 0.3 g/h; P < 0.05). Training resulted in increased muscle glycogen (80 +/- 23%; P < 0.05) and GLUT-4 content and hexokinase II enzyme activity (126 +/- 34 and 49 +/- 4%, respectively, both P < 0.01). Resting muscle phosphocreatine content also increased after training (Pre = 62.1 +/- 4.3, Post = 78.7 +/- 3.8, both mmol/kg dry wt and P < 0.05). Six months of thrice-weekly body-weight-supported treadmill training in persons with an incomplete spinal cord injury improved blood glucose regulation by increasing oxidation and storage of an oral glucose load. Increases in the capacity for transport and phosphorylation glucose in skeletal muscle likely play a role in these adaptations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号