首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ATP-synthase γ-subunit (FoF1) belongs to the rotor part of this oligomeric complex. Catalytic hydrolysis of adenosine triphosphate (ATP) is accompanied by rotation of γ-polypeptide inside the sphere formed by six subunits (αβ)3 of the enzyme. The γ-subunit regulates ATPase and ATP-synthase activities of the FoF1. In the present work, evolutionary and reverse changes of this regulatory polypeptide and their effect on properties of the enzyme are studied. It is suggested that elongation of the γ-subunit globular part had resulted from the atpC intragene duplication in the process of adaptive evolution. The evolved fragment participates in light regulation of the chloroplast ATP-synthase.  相似文献   

2.
To understand the regulatory function of the gamma and epsilon subunits of chloroplast ATP synthase in the membrane integrated complex, we constructed a chimeric FoF1 complex of thermophilic bacteria. When a part of the chloroplast F1 gamma subunit was introduced into the bacterial FoF1 complex, the inverted membrane vesicles with this chimeric FoF1 did not exhibit the redox sensitive ATP hydrolysis activity, which is a common property of the chloroplast ATP synthase. However, when the whole part or the C-terminal alpha-helices region of the epsilon subunit was substituted with the corresponding region from CF1-epsilon together with the mutation of gamma, the redox regulation property emerged. In contrast, ATP synthesis activity did not become redox sensitive even if both the regulatory region of CF1-gamma and the entire epsilon subunit from CF1 were introduced. These results provide important features for the regulation of FoF1 by these subunits: (1) the interaction between gamma and epsilon is important for the redox regulation of FoF1 complex by the gamma subunit, and (2) a certain structural matching between these regulatory subunits and the catalytic core of the enzyme must be required to confer the complete redox regulation mechanism to the bacterial FoF1. In addition, a structural requirement for the redox regulation of ATP hydrolysis activity might be different from that for the ATP synthesis activity.  相似文献   

3.
The chloroplast ATP-synthase catalyzes ATP synthesis coupled to transmembrane proton transport. The enzyme consists of two parts, a membrane-embedded F(0) part and an extrinsic F(1) part, which are linked by two connectors. One of these rotates during catalysis and the other remains static. Although the atomic structures of various sub-complexes and individual subunits have been reported, only limited structural information on the complex, as a whole, is available. In particular, information on the static connector is lacking. We contribute a three-dimensional map at about 20-A resolution, derived from electron cryomicroscopy of enzymes embedded in vitrified buffer followed by single particle image analysis. In the three-dimensional map both connectors, between the F(1) part and the F(0) part, are clearly visible. The static connector is tightly attached to an alpha subunit and faces the side of the neighboring beta subunit. The three-dimensional map provides a scaffold for fitting in the known atomic structures of various subunits and sub-complexes, and suggests that the oxidized, non-activated ATP-synthase from chloroplasts adopts a unique resting position.  相似文献   

4.
The first part of this paper is a brief review of works concerned with the mechanisms of functioning of F0F1-ATP synthases. F0F1-ATP syntheses operate as rotating molecular machines that provide the synthesis of ATP from ADP and inorganic phosphate (Pi) in mitochondria, chloroplasts, and bacteria at the expense of the energy of electrochemical gradient of hydrogen ions generated across energy-transducing mitochondrial, chloroplast or, bacterial membranes. A distinguishing feature of these enzymes is that they operate as rotary molecular motors. In the second part of the work, we calculated the contribution of electrostatic interactions between charged groups of a substrate (MgATP), reaction products (MgADP and Pi), and charged amino acid residues of the F1-ATPase molecule to energy changes associated with the binding of ATP and its chemical transformations in the catalytic centers located at the interface of the alpha- and beta-subunits of the enzyme (oligomer complex alpha 3 beta 3 gamma of bovine mitochondrial ATPase). The catalytic cycle of ATP hydrolysis considered in the work includes conformational changes of alpha- and beta-subunits caused by unidirectional rotations of the central gamma-subunit. The results of our calculations are consistent with the idea that the energetically favorable process of ATP binding to the "open" catalytic center of F1-ATPase initiates the rotation of the gamma-subunit followed by ATP hydrolysis in another ("closed") catalytic center of the enzyme.  相似文献   

5.
Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1‐ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy‐dissipating channel involved in cell death. We investigated whether aging alters FoF1‐ATP synthase self‐assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1‐ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1‐ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes’ susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1‐ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1‐ATP synthase glycation in H9c2 myoblasts recapitulated the age‐related defective FoF1‐ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1‐ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.  相似文献   

6.
Phosphorylase kinase is a multimeric enzyme of composition (alpha, beta, gamma, delta)4 whose catalytic activity resides in the gamma-subunit. As an approach to understand further its regulation, a cDNA for the gamma-subunit of phosphorylase kinase (gamma PhK) has been cloned into a mammalian expression vector behind the mouse metallothionein-1 promoter. NIH 3T3 cells were co-transfected with this construct (pEV gamma PhK) and pSV2neo, G418-resistant clones were selected, and several were found to have stably incorporated the gamma-subunit cDNA into their genomic DNA. Phosphorylase kinase activity was clearly present in extracts from cultures of pEV gamma PhK-transformed cells and increased several-fold after 24 h of incubation with Zn2+, whereas it was undetectable in the parent 3T3 cells. A significant, but variable, proportion (15-70%) of the activity was Ca2+-dependent. We conclude that the phosphorylase kinase activity expressed by the cells transformed with pEV gamma PhK is due to free gamma-subunit and gamma-subunit associated with cellular calmodulin, which replaces the delta-subunit normally associated with the gamma-subunit in the holoenzyme.  相似文献   

7.
We have attempted direct observation of the light-driven rotation of a FoF(1)-ATP motor. The FoF(1)-ATP motor was co-reconstituted by the deletion-delta subunit of FoF(1)-ATP synthase with bacteriorhodopsins (BRs) into a liposome. The BR converts radiation energy into electrochemical gradient of proton to drive the FoF(1)-ATP motor. Therefore, the light-driven rotation of FoF(1)-ATP motor has been directly observed by a fluorescence microscopy using a fluorescent actin filament connected to beta-subunit as a marker of its orientation. The rotational torque value of the Fo motor was calculated as 27.93+/-1.88pNnm. The ATP motor is expected to be a promising rotary molecular motor in the development of nanodevices.  相似文献   

8.
The kinetic properties of ATP hydrolysis and synthesis by FoF1-ATPase of heart mitochondria were evaluated during the acute phase of T. cruzi infection in rats. Mitochondria and submitochondrial particles were isolated 7 days (early stage) and 25 days (late stage) following infection of rats with 2 × 105 trypomastigote forms of the Y strain of T. cruzi. The kinetic properties for ATP hydrolysis were altered for the early but not the late stage, showing a changed pH profile, increased K0.5 values, and a decreased total Vmax. The Arrhenius' plot for membrane-associated enzyme showed a higher transition temperature with a lower value for the activation energy in body temperature. For the Triton X-100 - solubilized enzyme, the plot was similar to the control. A decrease in the efficiency of ADP phosphorylation by mitochondria, measured by the firefly-luciferase luminescence, was observed only during the late stage and appeared to be correlated with a decrease in the affinity of the FoF1-ATPase for ADP. It is proposed that in the early stage, during the acute phase of T. cruzi infection in rats, heart FoF1-ATPase undergoes a membrane-dependent conformational change in order to maintain the phosphorylation potential of mitochondria, which would compensate for the uncoupling of mitochondrial function. Also, during both the early and late stages, the enzyme seems to be under the regulation of the endogenous inhibitor protein for the preservation of cellular ATP levels.  相似文献   

9.
Mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe has been prepared under a stable form and in relatively high amounts by an improved purification procedure. Specific chemical modification of the enzyme by the thiol reagent N-ethylmaleimide (NEM) at pH 6.8 leads to complete inactivation characterized by complex kinetics and pH dependence, indicating that several thiols are related to the enzyme activity. A complete protection against NEM effect is afforded by low concentrations of nucleotides in the presence of Mg2+, with ADP and ATP being more efficient than GTP. A total binding of 5 mol of [14C]NEM/mol of F1-ATPase is obtained when the enzyme is 85% inactivated: 3 mol of the label are located on the alpha-subunits and 2 on the gamma-subunit. Two out of the 3 mol on the alpha-subunits bind very rapidly before any inactivation occurs, indicating that the two thiols modified are unrelated to the inactivation process. Complete protection by ATP against inactivation by NEM prevents the modification of three essential thiols out of the group of five thiols labeled in the absence of ATP: one is located on a alpha-subunit and two on the gamma-subunit. These two essential thiols of the gamma-subunit can be differentiated by modification with 6,6'-dithiodinicotinic acid (CPDS), another specific thiol reagent. A maximal binding of 4 mol of [14C]CPDS/mol of enzyme is obtained, concomitant to a 25% inhibition. Sequential modification of the enzyme by CPDS and [14C]NEM leads to the same final deep inactivation as that obtained with [14C]NEM alone. One out of the two thiols of the gamma-subunit is no longer accessible to [14C]NEM after CPDS treatment. When incubated at pH 6.8 with [3H]ATP in the presence of Mg2+, F1-ATPase is able to bind 3, largely exchangeable, mol of nucleotide/mol of enzyme. Modification of the three essential thiols by NEM dramatically decreases the binding of 3H-nucleotide down to about 1 mol/mol of enzyme. Partial modification modifies the cooperative properties, the enzyme being no longer sensitive to anion activation.  相似文献   

10.
Subunit structure of high molecular weight mouse nerve growth factor   总被引:2,自引:0,他引:2  
Studies from several laboratories have shown that mouse submandibular glands and mouse saliva contain nerve growth factor (NGF) as part of a high molecular weight oligomeric macromolecule composed of three different subunits, termed alpha, beta, and gamma. The beta-subunit is the nerve growth-promoting protein. The gamma-subunit is a serine protease class enzyme of highly restricted substrate specificity. The alpha-subunit has no known function. This high molecular weight form of nerve growth factor is also a Zn(II)-containing metalloprotein. In the present study, measurements of multiple physicochemical parameters have been used to deduce the subunit structure of high molecular weight NGF. Results demonstrate that it contains two alpha-, one beta- and one gamma-subunit together with one tightly bound Zn(II) ion per molecule.  相似文献   

11.
Here, we provide evidence that high ATP production by the mitochondrial ATP-synthase is a new therapeutic target for anticancer therapy, especially for preventing tumor progression. More specifically, we isolated a subpopulation of ATP-high cancer cells which are phenotypically aggressive and demonstrate increases in proliferation, stemness, anchorage-independence, cell migration, invasion and multi-drug resistance, as well as high antioxidant capacity. Clinically, these findings have important implications for understanding treatment failure and cancer cell dormancy. Using bioinformatic analysis of patient samples, we defined a mitochondrial-related gene signature for metastasis, which features the gamma-subunit of the mitochondrial ATP-synthase (ATP5F1C). The relationship between ATP5F1C protein expression and metastasis was indeed confirmed by immunohistochemistry. Next, we used MDA-MB-231 cells as a model system to functionally validate these findings. Importantly, ATP-high MDA-MB-231 cells showed a nearly fivefold increase in metastatic capacity in vivo. Consistent with these observations, ATP-high cells overexpressed (i) components of mitochondrial complexes I–V, including ATP5F1C, and (ii) markers associated with circulating tumor cells (CTCs) and metastasis, such as EpCAM and VCAM1. Knockdown of ATP5F1C expression significantly reduced ATP-production, anchorage-independent growth, and cell migration, as predicted. Similarly, therapeutic administration of the FDA-approved drug, Bedaquiline, downregulated ATP5F1C expression in vitro and prevented spontaneous metastasis in vivo. In contrast, Bedaquiline had no effect on the growth of non-tumorigenic mammary epithelial cells (MCF10A) or primary tumors in vivo. Taken together, our results suggest that mitochondrial ATP depletion is a new therapeutic strategy for metastasis prophylaxis, to avoid treatment failure. In summary, we conclude that mitochondrial ATP5F1C is a promising new biomarker and molecular target for future drug development, for the prevention of metastatic disease progression.Subject terms: Metastasis, Tumour heterogeneity  相似文献   

12.
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.  相似文献   

13.
Phosphorylase kinase is a Ca2+-regulated, multisubunit enzyme that contains calmodulin as an integral subunit (termed the delta-subunit). Ca2+-dependent activity of the enzyme is thought to be regulated by direct interaction of the delta-subunit with the catalytic subunit (the gamma-subunit) in the holoenzyme complex. In order to systematically search for putative calmodulin (delta-subunit)-binding domain(s) in the gamma-subunit of phosphorylase kinase, a series of 18 overlapping peptides corresponding to the C terminus of the gamma-subunit was chemically synthesized using a tea bag method. The calmodulin-binding activity of each peptide was tested for its ability to inhibit Ca2+/calmodulin-dependent activation of myosin light chain kinase. Data were obtained indicating that two distinct regions in the gamma-subunit, one spanning residues 287-331 (termed domain-N) and the other residues 332-371 (domain-C), are capable of binding calmodulin with nanomolar affinity. Peptides from both of these two domains also inhibited calmodulin-dependent reactivation of denatured gamma-subunit. The interactions of peptides from both domain-N and domain-C with calmodulin were found to be Ca2+-dependent. Dixon plots obtained using mixtures of peptides from domain-N and domain-C indicate that these two domains can bind simultaneously to a single molecule of calmodulin. Multiple contacts between the gamma-subunit and calmodulin (delta-subunit), as indicated by our data, may help to explain why strongly denaturing conditions are required to dissociate these two subunits, whereas complexes of calmodulin with most other target enzymes can be readily dissociated by merely lowering Ca2+ to submicromolar concentrations. Comparison of the sequences of the two calmodulin-binding domains in the gamma-subunit of phosphorylase kinase with corresponding regions in troponin I indicates similarities that may have functional and evolutionary significance.  相似文献   

14.
The codon 5383-5385 (CCG) in the atpC gene of the unc operon of Escherichia coli cells was replaced with the sequence encoding peptide A of human insulin. The foreign protein fused to the middle part of the gamma-subunit of ATP synthase affects neither biosynthesis of the chimeric polypeptide nor the integration of the EF(0) x F(1) enzyme into the membranes of the E. coli cells. The inserted peptide A does not inhibit the process of oxidative phosphorylation. The ATPase activity of the mutant EF(0) x F(1) enzyme was equal to that of the wild-type enzyme and was regulated by modifiers in the similar way, suggesting that the space in the stalk area of F(0)/F(1) interaction is enough for the introduction of an additional oligopeptide without changing catalytic properties of the ATP synthase.  相似文献   

15.
Mannose 6-phosphate-modified N-glycans are the determinant for intracellular targeting of newly synthesized lysosomal hydrolases to the lysosome. The enzyme responsible for the initial step in the synthesis of mannose 6-phosphate is UDP-N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosmine-1-phosphotransferase(GlcNAc-phosphotransferase). GlcNAc-phosphotransferase is a multisubunit enzyme with an alpha2beta2gamma2 arrangement that requires a detergent for solubilization. Recent cloning of cDNAs and genes encoding these subunits revealed that the alpha- and beta-subunits are encoded by a single gene as a precursor, whereas the gamma-subunit is encoded by a second gene. The hydropathy plots of the deduced amino acid sequences suggested that the alpha- and beta-subunits but not the gamma-subunit contain transmembrane domains. Access to these cDNAs allowed us to express a soluble form of human recombinant GlcNAc-phosphotransferase by removing the putative transmembrane and cytoplasmic domains from the alpha- and beta-subunits. Because this modification prevented precursor processing to mature alpha- and beta-subunits, the native cleavage sequence was replaced by a cleavage site for furin. When the modified alpha/beta-subunits (alpha'/beta'-subunits) precursor and wild type gamma-subunit cDNAs were co-expressed in 293T or CHO-K1 cells, a furin-like protease activity in these cells cleaved the precursor and produced an active and processed soluble GlcNAc-phosphotransferase with an alpha'2beta'2gamma2-subunits arrangement. Recombinant soluble GlcNAc-phosphotransferase exhibited specific activity and substrate preferences similar to the wild type bovine GlcNAc-phosphotransferase and was able to phosphorylate a lysosomal hydrolase, acid alpha-glucosidase in vitro.  相似文献   

16.
The interaction of rabbit skeletal muscle phosphorylase kinase with CNBr-activated glycogen results in the formation of a covalent complex. The non-bound kinase was removed by chromatography on DEAE-cellulose and phenyl-Sepharose. The amount of the bound protein increased with an increase in the number of activated groups in the glycogen molecule; the enzyme activity was thereby decreased. The kinase covalently and non-covalently bound to glycogen exhibited a higher affinity for the protein substrate (phosphorylase b) as well as for Mg2+ and Ca2+ than did the kinase in the absence of glycogen. Electrophoresis performed under denaturating conditions showed that the gamma-subunit of phosphorylase kinase is responsible for the enzyme binding to CNBr-glycogen. The effect of cross-linking reagents (glutaric aldehyde, 1.5-difluoro-2.4-dinitrobenzene) on the binding of phosphorylase kinase subunits was studied. Glycogen afforded protection of the gamma-subunit from the cross-linking to other enzyme subunits. An analysis of the subunit composition of phosphorylase kinase covalently bound to CNBr-glycogen and of the enzyme treated with cross-linking reagents in the presence of glycogen-revealed that the gamma-subunit is involved in the specific binding of phosphorylase kinase to glycogen.  相似文献   

17.
The crystal structure of a quinohemoprotein amine dehydrogenase from Pseudomonas putida has been determined at 1.9-A resolution. The enzyme comprises three non-identical subunits: a four-domain alpha-subunit that harbors a di-heme cytochrome c, a seven-bladed beta-propeller beta-subunit that provides part of the active site, and a small gamma-subunit that contains a novel cross-linked, proteinous quinone cofactor, cysteine tryptophylquinone. More surprisingly, the catalytic gamma-subunit contains three additional chemical cross-links that encage the cysteine tryptophylquinone cofactor, involving a cysteine side chain bridged to either an Asp or Glu residue all in a hitherto unknown thioether bonding with a methylene carbon atom of acidic amino acid side chains. Thus, the structure of the 79-residue gamma-subunit is quite unusual, containing four internal cross-links in such a short polypeptide chain that would otherwise be difficult to fold into a globular structure.  相似文献   

18.
A two-subunit (alphabeta) form of dissimilatory nitrate reductase from Pseudomonas stutzeri strain ZoBell was separated from the membrane-residing gamma-subunit by a heat solubilization step. Here we present an optimized purification protocol leading to a soluble alphabeta form with high specific activity (70 U/mg). The soluble form has the stoichiometry alpha(1)beta(1) consisting of the 130 kDa alpha-subunit and the 58 kDa beta-subunit. We did not observe any proteolytic cleavage in the course of the heat solubilization. The enzyme is competively inhibited by azide, but not by chlorate. It exhibits a K(M) value of 3.2 mM for nitrate. We compare the enzymatic and electron paramagnetic resonance (EPR) spectroscopic properties of the alphabeta form with the alphabetagamma holoenzyme which resides in the membrane and can be prepared by detergent extraction. The nearly identical EPR spectra for the Mo(V) signal of both enzyme preparations show that the active site is unaffected by the heat step. The factors influencing the binding of the alpha- and beta-subunit to the gamma-subunit are discussed.  相似文献   

19.
Coupling with electrochemical proton gradient, ATP synthase (F(0)F(1)) synthesizes ATP from ADP and phosphate. Mutational studies on high-resolution structure have been useful in understanding this complicated membrane enzyme. We discuss mainly the mechanism of catalysis in the beta subunit of F(1) sector and roles of the gamma subunit in energy coupling. The gamma-subunit rotation during catalysis is also discussed.  相似文献   

20.
The ATPase activity of the F1 moiety of rat liver ATP synthase is inactivated when incubated prior to assay at 25 degrees C in the presence of MgCl2. The concentration of MgCl2 (130 microM) required to induce half-maximal inactivation is over 30 times higher than the apparent Km (MgCl2) during catalysis. Moreover, the relative efficacy of divalent cations in inducing inactivation during prior incubation follows an order significantly different from that promoting catalysis. Inactivation of F1-ATPase activity by Mg2+ is accompanied by the dramatic dissociation from the F1 complex of alpha subunits and part of the gamma-subunit population. The latter form a precipitate while the beta, delta, and epsilon subunits, and the remaining part of the gamma-subunit population, remain soluble. Dissociation is not a sudden "all or none" event but parallels loss of ATPase activity until alpha subunits have almost completely dissociated together with about 50% of the gamma-subunit population. Mg2+-induced loss of F1-ATPase activity cannot be prevented by including either the hydrolytic substrates ATP, GTP, or ITP in the incubation medium or the product ADP. Ethylenediaminetetraacetic acid, mercaptoethanol, and dithiothreitol are also ineffective in preventing loss of ATPase activity. Significantly, KPi at high concentration (greater than or equal to 200 mM) is effective in partially protecting F1 against inactivation. However, the most effective means of preventing Mg2+-induced inactivation of F1-ATPase activity is to rebind F1 to its F0 moiety in F1-depleted particles. When bound to F0, F1 is protected completely against divalent cation induced inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号