首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipoxygenase plays a central role in polyunsaturated fatty acid metabolism, inaugurating the biosynthesis of eicosanoids in animals and phytooxylipins in plants. Redox cycling of the non-heme iron cofactor represents a critical element of the catalytic mechanism. Paradoxically, the isolated enzyme contains Fe(II), but the catalytically active form contains Fe(III), and the natural oxidant for the iron is the hydroperoxide product of the catalyzed reaction. Controlling the redox state of lipoxygenase iron with small molecules, inhibitors or activators, could be a means to modulate the activity of the enzyme. The effects of secondary alkyl hydroperoxides and the corresponding alcohols on soybean lipoxygenase-1 reaction rates were investigated and found to be very different. Secondary alcohols were noncompetitive or linear mixed inhibitors with inhibition constants in the millimolar concentration range, with more hydrophobic compounds producing lower values. Secondary alkyl hydroperoxides were inhibitors of lipoxygenase-1 primarily at high substrate concentration. They were more effective inhibitors than the alcohols, with dissociation constants in the micromolar concentration range. The hydroperoxides bearing longer alkyl substituents were the more effective inhibitors. Oxidation of the iron in lipoxygenase-1 by 2-hydroperoxyalkanes was evident in electron paramagnetic resonance (EPR) measurements, but the enzyme was neither activated nor was it inactivated. Instead there was evidence for an entirely different reaction catalyzed by the enzyme, a homolytic dehydration of the hydroperoxide to produce the corresponding carbonyl compound.  相似文献   

2.
Long-chain hydroxy acid oxydase (HAO) is a member of a flavoenzyme family with significant amino acid sequence similarity and strongly conserved three-dimensional structure; in particular, active-site amino acids involved in catalysis are invariant, with one exception, and numerous enzymatic studies suggest an identical chemical mechanism involving an intermediate carbanion for all family members. Known physiological substrates are a variety of L-2-hydroxy acids. Peroxisomal HAO differs from the other family members in that its actual physiological substrate is not known; it was first described as an L-amino acid oxidase, and recently was identified as an enzyme that converts creatol (hydroxycreatinine) to methylguanidine (a metabolite involved in a variety of uremic syndromes). Creatol (2-amino-5-hydroxy-1-methyl-4(5H)imidazolone) is not a 2-hydroxy acid. We show in this work that 2-hydroxyphenyl acetohydroxamate (HYPAH, the hydroxamate of mandelic acid), a compound that bears similarity both to mandelate (one of the best substrates known) and to creatol, is turned over by HAO, but between 10- and 100-fold less efficiently than mandelate itself. The compound also binds to the active site of homologous flavocytochrome b(2) (L-lactate dehydrogenase). Comparative pH-rate studies for mandelate and its hydroxamate suggest that HYPAH may bind in its ionized form. Both pH-rate profiles are bell-shaped curves, as are those determined for two other family members, flavocytochrome b(2) and mandelate dehydrogenase; while the group with an acid pK(a) between 5 and 6 is most likely the active-site histidine (the residue which abstracts the substrate C2 proton), the identity of the basic group is less clear. It has been proposed to be one of the active site arginines (Lehoux, I., and Mitra, B. (1999) Biochemistry38, 5836-5848); we suggest as an alternative that it could be the lysine residue that interacts with the flavin N1 and O2 positions and stabilizes the negative charge of reduced flavin. In addition to these studies, we have found that HAO is competitively inhibited by benzohydroxamate, which is one atom shorter than HYPAH; its affinity is nearly 100-fold lower than that of the substrate, in contrast to the strong inhibition it exerts on mandelate racemase (Maurice, St. M., and Bearne, S. L. (2000) Biochemistry39, 13324-13335). In the latter case, the 100-fold higher affinity compared to mandelate was proposed to arise from the fact that the hydroxamate can mimic the enolic intermediate which lies on the reaction pathway after C2 proton abstraction. Thus our results do not support the existence of a similar enolic intermediate for HAO (and probably its homologues), although they do not disprove it.  相似文献   

3.
Chondrosarcoma is the third most common cartilaginous bone tumour that is insusceptible to radio- and chemotherapy and it is inclined to metastasis. These resistant qualities are facilitated by mutant variants of isocitrate dehydrogenases (IDH) 1–2 enzyme. These mutant enzymes promote oncogenesis of chondrocytes by changing their epigenetic wardrobe leading to tumour formation. Presently, there are lack of drugs available to be exploited as a remedy for this disease. On the other hand, majority of chemotherapeutic drugs induce cytotoxicity in the cancer cells at the cost of harming surrounding healthy cells, jeopardizing human life. The current study is focused on screening various medicinal compounds against IDH1 and IDH2 combined with insilico gene expression, cancer cells cytotoxicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) studies to elucidate the molecular mechanism against chondrosarcoma and also to uncover pharmacokinetic profile of these compounds. Screening of 5000+ compounds filtered two efficacious compounds (Artocarpetin and 5-Galloylquinic acid) capable of establishing hydrogen bond connections with both IDH variants. Other studies showed that these compounds downregulate ITGAV, CARPIN1, CCL5 and COG5 and TNFRSF10B gene that reduces chondrogenesis and inflammation, Artocarpetin and 5-galloylquinic acid are TP53 expression enhancer and inhibit MM9 expression that promote immunomodulation and apoptosis in these cancers. These compounds are both active against CHSA8926 and CHSA011 cell line of chondrosarcoma. However, the ADME profile of 5-galloylquinic acid is slightly unsatisfactory based on druglikness and bioavailability score criteria as compared to artocarpetin. Both of these compounds are class-5 chemicals and require high doses to elicit adverse response. Our results suggest that artocarpetin and 5-galloylquinic acid are efficacious drug candidates and could be further exploited to validate these findings in vitro.  相似文献   

4.
4-Methylumbelliferyl β-D-glucoside, 4-methylumbelliferyl β-D-galactoside and 4-methylumbelliferyl- N -acetyl-β- D -glucosaminide were used as substrates for screening for extracellular enzyme activity in fungal culture filtrates. Enzyme activity was observed as fluorescence under long wave ultraviolet light. The presence or absence of enzymic activity in fungal culture filtrates was compared to results obtained with the commercially produced API ZYM system.  相似文献   

5.
Plant seeds store triacylglycerols (TAGs) in intracellular organelles called oil-bodies or oleosomes, which consist of oil droplets covered by a coat of phospholipids and proteins. During seed germination, the TAGs of oil-bodies hydrolysed by lipases sustain the growth of the seedlings. The mechanism whereby lipases gain access to their substrate in these organelles is largely unknown. One of the questions that arises is whether the protein/phospholipid coat of oil-bodies prevents the access of lipase to the oil core. We have investigated the susceptibility of almond oil-bodies to in vitro lipolysis by various purified lipases with a broad range of biochemical properties. We have found that all the enzymes assayed were capable of releasing on their own free fatty acids from the TAG of oil-bodies. Depending on the lipase, the specific activity measured on oil-bodies using the pH-stat technique was found to range from 18 to 38% of the specific activity measured on almond oil emulsified by gum arabic. Some of these lipases are known to have a dual lipase/phospholipase activity. However, no correlation was found to exist between the ability of a lipase to readily and efficiently hydrolyse the TAG content of oil-bodies and the presence of a phospholipase activity. Kinetic studies indicate that oil-bodies behave as a substrate as other proteolipid organelles such as milk fat globules. Finally we have shown that a purified water-soluble plant lipase on its own can easily hydrolyse oil-bodies in vitro. Our results suggest that the lipolysis of oil-bodies in seedlings might occur without any pre-hydrolysis of the protein coat.  相似文献   

6.
The L-arginine analogs, N(delta)-methyl-L-arginine (deltaMA) and L-canavanine, were used to probe the role of the N delta nitrogen of L-arginine in the reaction catalyzed by nitric oxide synthase (NOS). deltaMA was synthesized and found to be a partial alternate substrate and a weak, reversible inhibitor of NOS with a Ki equal to 1.4 mM. deltaMA undergoes hydroxylation; however, it is not converted further, hence it functions as a partial substrate. L-Canavanine was converted to an L-homoserine presumably via initial hydroxylation and decomposition. The mechanism of this reaction and products of this reaction were not probed further.  相似文献   

7.
8.
A variety of naturally occurring amino acids, their isomers, and synthetic analogs were tested for their ability to inhibit uptake of [3H]glutamate into presynaptic vesicles from bovine cerebral cortex. Strongest inhibition (Ki<1mM) was observed fortrans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) anderythro-4-methyl-L-glutamic acid (MGlu), while 4-methylene-L-glutamic acid (MeGlu) was only moderately inhibitory (Ki=3mM), indicating that the synaptic vesicle glutamate translocator has higher affinity forrans-ACPD and MGlu than for glutamate. A few other amino acids, e.g., 4-hydroxyglutamic acid, S-carboxyethyl cysteine, and 5-fluorotryptophan, were slightly inhibitory; alll- anddl-isomers of protein amino acids and longer chain acidic amino acids were without measurable inhibition. Potassium tetrathionate and S-sulfocysteine exhibited strong to moderate noncompetitive or irreversible inhibition. Inhibition by t-ACPD, MGlu, or MeGlu was competitive with glutamic acid. Each of these competitive inhibitors was also taken up by the vesicle preparation in an ATP-dependent manner, as indicated by their being recovered unchanged from filtered vesicles. Similar results were obtained with reconstituted vesicles, while glutamate uptake by partially purified rat synaptosomes was inhibited only by MGlu. These results indicate that the glutamate translocator of presynaptic vesicles has stringent structural requirements distinct from those of the plasma membrane translocator and the metabotropic type of postsynaptic glutamate receptor. They further suggest possible structural requirements of pharmacologically significant compounds that can substitute for glutamic acid in the presynaptic side of glutamatergic synapses, thus serving to moderate or control glutamate excitation and associated excitotoxic effects in these neurons.Special issue dedicated to Dr. Paul Greengard  相似文献   

9.
G W Plaut  R L Beach  T Aogaichi 《Biochemistry》1975,14(12):2581-2588
D-Garcinia acid (D-threo-1,2-dihydroxy-1,2,3-propanetricarboxylate), like D-isocitrate, has an alpha-DS-hydroxyl group and a beta-LS configuration of the second carboxyl group. The maximal velocity of pyridine nucleotide reduction with D-garcinia acid is 8 and 21% of D-threo-isocitrate with the DPN-linked and TPN-linked isocitrate dehydrogenase from bovine heart, respectively. The other stereoisomers of hydroxycitrate [L-garcinia acid, D- and L-hibiscus acid (D- and L-erythro-1,2-dihydroxy-1,2,3-propanetricarboxylate)] are inactive. DL-threo-Homoisocitrate (DL-threo-1-hydroxy-1,2,4-butanetricarboxylate) supports DPN+ reduction at 10-15% of the rate observed for isocitrate with the DPN-specific enzyme, but is not a substrate for TPN-linked isocitrate dehydrogenase. The values of apparent S0.5 for total isocitrate and total garcinia acid are similar with both enzymes; the apparent S0.5 of total homoisocitrate is two- to threefold higher than that of total isocitrate with the DPN-linked enzyme. Enzymatic oxidative decarboxylation of garcinia acid and homoisocitrate leads to formation of alpha-keto-beta-hydroxyglutarate and alpha-ketoadipate, respectively. DL-Methylmalate (DL-1-hydroxy-2-methylsuccinate) is inactive as a substrate for either dehydrogenase as are the newly synthesized compounds: DL-threo-gamma-isocitrate amide (DL-threo-1-hydroxy-3-carbamy01,2-propanedicarboxylate), beta-methyl-DL-isocitrate (DL-1-hydroxy-2-methyl-1,2,3-propanetricarboxylate), beta-methyl-DL-garcinia acid (DL-threo-1-hydroxyl-2-methoxy-1,2,3-propanetricarboxylate), DL-1-hydroxyl-1,2,2-ethanetricarboxylate, and DL-1,4-dihydroxy-1,2-butanedicarboxylate.  相似文献   

10.
W B Knight  W W Cleland 《Biochemistry》1989,28(14):5728-5734
The kinetic and catalytic mechanism of glycerokinase from Candida mycoderma was examined with thiol and amino analogues of glycerol and with MgAMPPCP, an analogue of MgATP. (S)-1-Aminopropanediol was phosphorylated on nitrogen (Vmax 0.4% that of glycerol) while the R enantiomer was phosphorylated on oxygen (Vmax 0.7% that of glycerol). (S)-1-Mercaptopropanediol was phosphorylated on oxygen (Vmax 3.5% that of glycerol), while the R enantiomer was phosphorylated on sulfur (Vmax 0.001% that of glycerol). The hydroxyl group at C-2 thus orients the substrate in the active site, while that at the carbon remote from phosphorylation enhances both catalysis and binding of the substrate, presumably because of hydrogen-bonding interactions. The kinetic mechanism is random with a high degree of synergistic binding between the substrates, so that the mechanism appears ordered with glycerol adding first but equilibrium ordered with MgATP binding first with the amino analogues.  相似文献   

11.
12.
The CO2 adducts resulting from N-, O-, and S-carboxylation of suitable precursors are close analogues of carboxylate substrates in which -NH-CO2-, -O-CO2-, or -S-CO2- replaces -CH2-CO2- in the physiological substrate, -NOH-CO-2 replaces -CHOH-CO-2 and O-CO2- replaces -O-PO3H- R-XH + CO2 in equilibrium with R-X-CO2- + H+ X(-XH = -NH2, -NHOH, -OH or -SH). We find that aconitase catalyzes the CO2-dependent dehydration of N-hydroxy-DL-aspartate and erythro-beta-hydroxyl-L-aspartate with respective kcat values 62 and 90% of kcat for citrate and Km values of 3.6 and 3.2 mM, respectively. The CO2 adducts (carbamates) of the precursors would be structural and stereo analogues of the physiological substrate isocitrate. Detailed kinetic analyses of the behavior of intermediates and products show that aconitase catalyzes the formation of the enzyme-bound CO2 adducts from enzyme-bound precursors and CO2 and directs them, as well as the preformed CO2 adducts, into alpha,beta water elimination reactions formally identical to the isocitrate/cis-aconitate reaction. Six other enzymes of carbohydrate metabolism (succinate thiokinase and isocitrate, glucose-6-phosphate, succinate semialdehyde, glutamate, and malate dehydrogenase) utilize CO2 adducts as reactive substrate analogues. At least one of these (glucose-6-phosphate dehydrogenase) catalyzes the formation of the enzyme-bound CO2 adduct (presumed to be D-glucose 6-carbonate in this case) from enzyme-bound precursor (D-glucose) and CO2 in the manner of aconitase. The case of malate dehydrogenase is unique because the reactive malate analogue, -O2C-O-CHOH-CO-2, arises from nucleophilic attack of HCO-3 on the carbonyl of glyoxylate, rather than electrophilic attack of CO2 on the hydrated carbonyl of glyoxylate.  相似文献   

13.
Analogues of farnesyl pyrophosphate containing a farnesyl moiety and a variety of amine residues replacing the pyrophosphate have been synthesized. Most of these compounds were effective inhibitors of the synthesis of squalene and presqualene pyrophosphate from farnesyl pyrophosphate. 50% inhibition was obtained at concentrations between 50 and 100 micron. These analogues also inhibited other microsomal enzymes so they apparently function as general inhibitors of microsomal enzymes.  相似文献   

14.
Saturation transfer difference (STD) NMR experiments on Escherichia coli and Drosophila melanogaster succinic semialdehyde dehydrogenase (SSADH, EC1.2.1.24) suggest that only the aldehyde forms and not the gem-diol forms of the specific substrate succinic semialdehyde (SSA), of selected aldehyde substrates, and of the inhibitor 3-tolualdehyde bind to these enzymes. Site-directed mutagenesis of the active site cysteine311 to alanine in D. melanogaster SSADH leads to an inactive product binding both SSA aldehyde and gem-diol. Thus, the residue cysteine311 is crucial for their discrimination. STD experiments on SSADH and NAD+/NADP+ indicate differential affinity in agreement with the respective cosubstrate properties. Epitope mapping by STD points to a strong interaction of the NAD+/NADP+ adenine H2 proton with SSADH. Adenine H8, nicotinamide H2, H4, and H6 also show STD signals. Saturation transfer to the ribose moieties is limited to the anomeric protons of E. coli SSADH suggesting that the NAD+/NADP+ adenine and nicotinamide, but not the ribose moieties are important for the binding of the coenzymes.  相似文献   

15.
16.
17.
A procedure for measuring the activities of enzymes that alter the covalent structure of DNA is described. The assay utilizes covalently closed circles of DNA as the substrate and yields quantitative data on the fraction of this DNA converted to both open-circle and linear forms.  相似文献   

18.
We assessed the interaction of three electrically neutral detergents (Triton X-100, C12EO8, and Tween 80) with P-glycoprotein (ABCB1, MDR1) and identified the molecular elements responsible for this interaction. To this purpose we titrated P-glycoprotein in inside-out plasma membrane vesicles of MDR1-transfected mouse embryo fibroblasts (NIH-MDR1-G185) with the detergents below their critical micelle concentration, CMC. The P-glycoprotein ATPase measured as a function of the detergent concentration yielded bell-shaped activity curves which were evaluated with a two-site binding model. The lipid-water partition coefficient and the transporter-water binding constant of the detergents were measured independently. Knowledge of these two parameters allowed assessment of the free energy of detergent binding to P-glycoprotein in the lipid membrane, ΔGtl0, that reflects the direct detergent-transporter affinity. It increased as the number of ethoxyl groups increased, suggesting that these hydrogen bond acceptor groups are the key elements for the detergent-transporter interaction in the lipid membrane. The free energy of binding to P-glycoprotein per ethoxyl group (EO) was determined as approximately ΔGEO0 = − 1.6 kJ/mol. The present findings moreover document that, depending on the concentration applied, detergents are intrinsic substrates for, or inhibitors of P-glycoprotein.  相似文献   

19.
Cytosolic sulfotransferases (SULTs) in mammals are involved in the biotransformation and homeostasis of various endogenous and xenobiotic compounds. The current study aimed to examine the sulfation of contraceptive compounds by various human cytosolic SULTs and to investigate the inhibitory effects and mode of action of these compounds on the sulfation of 17beta-estradiol, a major endogenous estrogen. A systematic study using all eleven known human cytosolic SULTs revealed the differential substrate specificity of these enzymes for the eight representative contraceptive compounds and two endogenous estrogens (estrone and 17beta-estradiol) tested as substrates. Activity data showed that SULT1A1 displayed the strongest activity toward 17alpha-ethynylestradiol. Kinetic studies revealed that the V (max) value of the sulfation of 17alpha-ethynylestradiol by SULT1A1 was 1.64 times that of the sulfation of 17beta-estradiol, while the K (m) values were almost equal for the two compounds. The inhibitory effects of three contraceptive compounds on the sulfation of 17beta-estradiol by SULT1A1 were examined. IC(50) values determined were 0.193, 1.84, and 2.98 mM, respectively, for 19-norethindrone acetate, ethynodiol diacetate and mifepristone. Kinetic analyses indicated that the mechanism underlying the inhibition by these contraceptives is of a mixed noncompetitive type. Metabolic labeling experiments confirmed the sulfation of contraceptive compounds and the release of their sulfated derivatives by HepG2 human hepatoma cells. Collectively, the results obtained suggest a role of sulfation in the metabolism of contraceptive compounds in vivo. Moreover, in view of their inhibitory effects on the sulfation of 17beta-estradiol, these compounds may potentially act to disrupt the homeostasis of endogenous estrogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号