首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristic property of the mammalian IGF-II molecule is the capability for the high-affinity binding to the IGF-2-receptor. The history of the appearance of the IGF-2 receptor in vertebrate phylogenesis is rather confused. IGF-2-receptor isoforms that are able to bind IGF-II with high affinity are revealed in tissues of mammals and fish, but not in amphibians and birds. The appearance of IGF-II itself and of structural modifications of its molecule in the course of phylogenesis remains unclear. The author proposed principle of bipolar structure of the A-chain domain participating in binding the IGF-2-receptor. This principle has made it possible to analyze changes of the amino acid composition of this domain in molecules of IGF-II and related peptides at various stages of vertebrate phylogenesis. Composition of the studied domain has allowed considering the cyclostome IGF as a precursor of fish IGF-II and IGF-I; in vertebrates, the domain composition is more variable in IGF-II than in IGF-I. Based on the performed analysis, it is suggested that the species-specific character of interaction of IGF-II with the IGF-2-receptor in the lower vertebrates and birds is one of obstacles of detecting the IGF-2 receptor in their tissues; IGF-I is also suggested to be a possible ligand of the IGF-2-receptor in the lower vertebrates.  相似文献   

2.
The review presents data on the insulin-like growth factor-II (IGF-II), a regulatory peptide included in the insulin superfamily, as its structure and function are the closest to those of insulin and IGF-I. The last decade investigations revealed the biological properties of IGF-II which distinguish it from related peptides. The primary sequence of the IGF-II structure has peculiar differences from those of insulin but insignificant ones from IGF-I. The tertiary structure of IGF-II is similar to that of the related peptide molecules, but a peculiar receptor-binding domain in the IGF-II molecule provides for its unique capability of interacting with receptors. IGF-II interacts with three types of receptors: receptors of IGF-I, IGF-2, and insulin. IGF-II has the highest affinity to IGF-2 receptors but its mitogenic effects are mediated by IGF-I receptors (i.e., the phenomenon of divergence of binding and biological activities). The arguments obtainedin vitro andin vivo are presented, which confirm propagation of mitogenic effects by IGF-I receptors but deny participation of IGF-2 receptors. The structural and functional bivalency of the M6P/IGF-2 receptor (a peculiar form of the M6P receptor in mammals) is considered in detail. The results of interactions of IGF-II and the M6P/IGF-2 receptors are not yet known. The primary function of the M6P/IGF-2 receptor (sorting and transport of the lysosomal enzymes) is likely to be due to the peptides inactivation and does not imply its participation in the IGF-II signaling. However, several data do not permit ruling out participation of the IGF-2 receptor in the IGF-II effects different from mitogenic ones. The organization of related peptide gene in the lancelet allows us to suggest the appearance of the IGF-II gene at the initial steps of the vertebrate evolution and to trace all stages of formation of two separate IGF genes up to the mammalian IGF-II and IGF-I genes with different structural organizations. The IGF-II expression by embryonic tissues is revealed earlier than that of other related peptides and reaches the highest level at the embryonal period. The general regularities of the IGF-II regulatory activity in embryogenesis and of the growth hormone effect on the IGF-II expression in embryonal tissues are considered.  相似文献   

3.
The insulin receptor (IR) lacking the alternatively spliced exon 11 (IR-A) is preferentially expressed in fetal and cancer cells. The IR-A has been identified as a high-affinity receptor for insulin and IGF-II but not IGF-I, which it binds with substantially lower affinity. Several cancer cell types that express the IR-A also overexpress IGF-II, suggesting a possible autocrine proliferative loop. To determine the regions of IGF-I and IGF-II responsible for this differential affinity, chimeras were made where the C and D domains were exchanged between IGF-I and IGF-II either singly or together. The abilities of these chimeras to bind to, and activate, the IR-A were investigated. We also investigated the ability of these chimeras to bind and activate the IR exon 11+ isoform (IR-B) and as a positive control, the IGF-I receptor (IGF-1R). We show that the C domain and, to a lesser extent, the D domains represent the principal determinants of the binding differences between IGF-I and IGF-II to IR-A. The C and D domains of IGF-II promote higher affinity binding to the IR-A than the equivalent domains of IGF-I, resulting in an affinity close to that of insulin for the IR-A. The C and D domains also regulate the IR-B binding specificity of the IGFs in a similar manner, although the level of binding for all IGF ligands to IR-B is lower than to IR-A. In contrast, the C and D domains of IGF-I allow higher affinity binding to the IGF-1R than the analogous domains of IGF-II. Activation of IGF-1R by the chimeras reflected their binding affinities whereas the phosphorylation of the two IR isoforms was more complex.  相似文献   

4.
To investigate the interaction of the insulin-like growth factor (IGF) ligands with the insulin-like growth factor type 1 receptor (IGF-1R), we have generated two soluble variants of the IGF-1R. We have recombinantly expressed the ectodomain of IGF-1R or fused this domain to the constant domain from the Fc fragment of mouse immunoglobulin. The ligand binding properties of these soluble IGF-1Rs for IGF-I and IGF-II were investigated using conventional ligand competition assays and BIAcore biosensor technology. In ligand competition assays, the soluble IGF-1Rs both bound IGF-I with similar affinities and a 5-fold lower affinity than that seen for the wild type receptor. In addition, both soluble receptors bound IGF-II with similar affinities to the wild type receptor. BIAcore analyses showed that both soluble IGF-1Rs exhibited similar ligand-specific association and dissociation rates for IGF-I and for IGF-II. The soluble IGF-1R proteins both exhibited negative cooperativity for IGF-I, IGF-II, and the 24-60 antibody, which binds to the IGF-1R cysteine-rich domain. We conclude that the addition of the self-associating Fc domain to the IGF-1R ectodomain does not affect ligand binding affinity, which is in contrast to the soluble ectodomain of the IR. This study highlights some significant differences in ligand binding modes between the IGF-1R and the insulin receptor, which may ultimately contribute to the different biological activities conferred by the two receptors.  相似文献   

5.
The insulin-like growth factors IGF-I and IGF-II are mitogenic polypeptides with a high degree of chemical homology. Two distinct subtypes of receptors for the IGFs have been identified on the basis of structure and binding specificity. Type I IGF receptors bind IGF-I with equal or greater affinity than IGF-II, and also bind insulin with a low but definite affinity. They are structurally homologous to insulin receptors, containing disulfide-linked a-subunits that bind the peptides and beta-subunits that have intrinsic tyrosine-specific kinase activity. Type II IGF receptors typically bind IGF-II with greater affinity than IGF-I, and do not interact with insulin. They consist of a single polypeptide and lack tyrosine kinase activity. Because of the extensive cross-reactivity of IGF-I and IGF-II with both type I and type II receptors, we believe that potentially either receptor may mediate the biological responses of either peptide. Type I IGF receptors have been shown to mediate the mitogenic effects of the IGFs in some cell types. Whether type II IGF receptors mediate the same or different functions remains to be elucidated.  相似文献   

6.
The IGF-1R [type 1 IGF (insulin-like growth factor) receptor] is activated upon binding to IGF-I and IGF-II leading to cell growth, survival and migration of both normal and cancerous cells. We have characterized the binding interaction between the IGF-1R and its ligands using two high-affinity mouse anti-IGF-1R mAbs (monoclonal antibodies), 7C2 and 9E11. These mAbs both block IGF-I binding to the IGF-1R but have no effect on IGF-II binding. Epitope mapping using chimaeras of the IGF-1R and insulin receptor revealed that the mAbs bind to the CR (cysteine-rich) domain of IGF-1R. The epitope was finely mapped using single point mutations in the IGF-1R. Mutation of Phe241, Phe251 or Phe266 completely abolished 7C2 and 9E11 binding. The three-dimensional structure showed that these residues cluster on the surface of the CR-domain. BIAcore analyses revealed that IGF-I and a chimaeric IGF-II with the IGF-I C-domain competed for the binding of both mAbs with the IGF-1R, whereas neither IGF-II nor a chimaeric IGF-I with the IGF-II C-domain affected antibody binding. We therefore conclude the IGF-I C-domain interacts with the CR (cysteine-rich) domain of the receptor at the cluster of residues Phe241, Phe251 and Phe266. These results allow precise orientation of IGF-I within the IGF-I-IGF-1R complex involving the IGF-I C-domain binding to the IGF-1R CR domain. In addition, mAbs 7C2 and 9E11 inhibited both IGF-I- and IGF-II-induced cancer cell proliferation, migration and IGF-1R down-regulation, demonstrating that targeting the IGF-1R is an effective strategy for inhibition of cancer cell growth.  相似文献   

7.
B Zhang  R A Roth 《Biochemistry》1991,30(21):5113-5117
We constructed and expressed chimeric receptor cDNAs with insulin receptor exon 3 (residues 191-297 of the cysteine-rich region) replaced with either the comparable region of the insulin-like growth factor I receptor (IGF-IR) or the insulin receptor related receptor (IRR). Both chimeric receptors still could bind insulin with as high affinity as the wild-type receptor. In addition, chimeric receptors containing exon 3 of the IGF-IR could also bind with high affinity both IGF-I and IGF-II. In contrast, chimeric receptors containing exon 3 of IRR did not bind either IGF-I, IGF-II, or relaxin. These results indicate that (1) the high affinity of binding of insulin to its receptor can occur in the absence of insulin receptor specific residues encoded by exon 3, the cysteine-rich region; (2) the cysteine-rich region of the IGF-I receptor can confer high-affinity binding to both IGF-I and IGF-II; and 3) the IRR is unlikely to be a receptor for either IGF-I, IGF-II, or relaxin.  相似文献   

8.
We have studied the binding of 125I-GF-II to the IM-9 human lymphoid cell line, and to human placental membranes. All of IGF-II radioligand binding to IM-9 cells, and half of the binding to human placental membranes is to a previously unrecognized common (Type-III) high affinity receptor site for insulin-like peptides, in which IGF-I and IGF-II are equipotent and insulin only slightly less potent. This common receptor represents another mechanism by which insulin, and the somatomedins can exert biological action.  相似文献   

9.

Background

Insulin-like growth factor-II (IGF-II) promotes cell proliferation and survival and plays an important role in normal fetal development and placental function. IGF-II binds both the insulin-like growth factor receptor (IGF-1R) and insulin receptor isoform A (IR-A) with high affinity. Interestingly both IGF-II and the IR-A are often upregulated in cancer and IGF-II acts via both receptors to promote cancer proliferation. There is relatively little known about the mechanism of ligand induced activation of the insulin (IR) and IGF-1R. The recently solved IR structure reveals a folded over dimer with two potential ligand binding pockets arising from residues on each receptor half. Site-directed mutagenesis has mapped receptor residues important for ligand binding to two separate sites within the ligand binding pocket and we have recently shown that the IGFs have two separate binding surfaces which interact with the receptor sites 1 and 2.

Methodology/Principal Findings

In this study we describe a series of partial IGF-1R and IR agonists generated by mutating Glu12 of IGF-II. By comparing receptor binding affinities, abilities to induce negative cooperativity and potencies in receptor activation, we provide evidence that residue Glu12 bridges the two receptor halves leading to receptor activation.

Conclusions/Significance

This study provides novel insight into the mechanism of receptor binding and activation by IGF-II, which may be important for the future development of inhibitors of its action for the treatment of cancer.  相似文献   

10.
Insulin-like growth factor (IGF)-binding proteins (BPs) bind IGF-I and IGF-II with high affinity. They are present in extracellular fluids and modulate the interactions of their ligands with the type 1 IGF cell surface receptor. These studies utilized IGF-I analogs that have reduced binding affinity for either the type 1 IGF receptor or binding proteins to study the ligand specificity of IGF-BP-1 and the role of IGF-BP-1 in modulating the biological activity of IGF-I. The data indicate that the regions of IGF-I which are responsible for binding to IGF-BP-1 and to human serum-binding proteins are distinct but overlapping and are clearly distinct from the type I receptor binding sites. In the absence of exogenously added IGF-BP-1, the analogs with reduced affinity for IGF-BP-1 are more potent than IGF-I in stimulating DNA synthesis by porcine aortic smooth muscle cells. In contrast, when cells are concomitantly exposed to IGF-BP-1, two of the analogs with reduced affinity for binding protein give only 40-65% of the maximal IGF-I response. [Leu24, 1-62]IGF-I, which has a 100-fold reduced affinity for the type 1 IGF receptor, gave a value that was 62% of the maximal IGF-BP-1 potentiated response. A second biological response, that of stimulating binding protein secretion by IGF-I, was also examined. [Leu24, 1-62]IGF-I is more potent than IGF-I whereas the activity of the analogs with lower affinity for IGF-BP-1 is significantly reduced. Thus, the ability to activate DNA synthesis and binding protein secretion maximally in the presence of IGF-BP-1 is dependent on the affinity of IGFs for both type 1 receptors and binding proteins.  相似文献   

11.
Fetal murine neuronal cells bear somatomedin receptors which can be classified according to their affinities for IGF-I, IGF-II and insulin. Binding of 125I-IGF-I is half-maximally displaced by 7 ng/ml IGF-I while 15- and 700-fold higher concentrations are required for, respectively, IGF-II and insulin. Linear Scatchard plots of competitive-binding data with IGF-I suggest one single class of type I IGF receptors (Ka = 2.6 X 10(9) M-1; Ro = 4500 sites per cell). The occurrence of IGF-II receptors appears from the specific binding of 125I-IGF-II and competition by unlabeled IGF-II; the IGF-II binding sites display a low affinity for IGF-II and no affinity for insulin. IGF-II also interacts with insulin receptors although 50- to 100-fold less potent than insulin in competing for 125I-insulin binding. The presence of distinct receptors for IGF-I, IGF-II and insulin on fetal neuronal cells is consistent with a role of these peptides in neuronal development, although our data also indicate that IGF-I receptors could mediate the growth promoting effects of insulin.  相似文献   

12.
Recombinant human insulin-like growth factors (rhIGF-I and rhIGF-II) and human insulin promoted the differentiation of spermatogonia into primary spermatocytes in newt testes fragments cultured in a chemically defined medium. The biological potency for promoting differentiation was dose-dependent for all the ligands with the highest potency displayed by IGF-I, followed by IGF-II, and the least by insulin. The difference in potency was larger between IGF-II and insulin than that between IGF-I and IGF-II. This order of biological potency was in good accordance with the order of affinity in binding specificity of [125I]IGF-I to the testicular membrane fractions: IGF-II and insulin competed the binding of [125I]IGF-I only at concentrations 20-fold and 100-fold higher, respectively, than IGF-I. Specific binding was observed in both somatic cells (mostly Sertoli cells) and germ cells (spermatogonia and primary spermatocytes), though the binding to somatic cells was about 2.7 times higher than that to germ cells. These results indicate that (1) specific binding sites for IGF-I are present in the newt testes, (2) IGF-II and insulin also bind to these receptors but to a lesser degree, and (3) IGF-II and insulin as well as IGF-I promote spermatogonial differentiation into primary spermatocytes by binding to the IGF-I receptor.  相似文献   

13.
14.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   

15.
The insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) have a highly homologous structure, but different biological effects. Insulin and IGF-I half-receptors can heterodimerize, leading to the formation of insulin/IGF-I hybrid receptors (Hybrid-Rs) that bind IGF-I with high affinity. As the IR exists in two isoforms (IR-A and IR-B), we evaluated whether the assembly of the IGF-IR with either IR-A or IR-B moieties may differently affect Hybrid-R signaling and biological role. Three different models were studied: (a) 3T3-like mouse fibroblasts with a disrupted IGF-IR gene (R(-) cells) cotransfected with the human IGF-IR and with either the IR-A or IR-B cDNA; (b) a panel of human cell lines variably expressing the two IR isoforms; and (c) HepG2 human hepatoblastoma cells predominantly expressing either IR-A or IR-B, depending on their differentiation state. We found that Hybrid-Rs containing IR-A (Hybrid-Rs(A)) bound to and were activated by IGF-I, IGF-II, and insulin. By binding to Hybrid-Rs(A), insulin activated the IGF-I half-receptor beta-subunit and the IGF-IR-specific substrate CrkII. In contrast, Hybrid-Rs(B) bound to and were activated with high affinity by IGF-I, with low affinity by IGF-II, and insignificantly by insulin. As a consequence, cell proliferation and migration in response to both insulin and IGFs were more effectively stimulated in Hybrid-R(A)-containing cells than in Hybrid-R(B)-containing cells. The relative abundance of IR isoforms therefore affects IGF system activation through Hybrid-Rs, with important consequences for tissue-specific responses to both insulin and IGFs.  相似文献   

16.
Insulin-like growth factor I (IGF-I) is a peptide related to insulin and IGF-II. These three related peptides produce similar biological effects, but each of them has its irreplaceable physiological significance in the organism. Multisided functional role of IGF-I in the organism is due to its unique binding properties. Specifically, but with different degree of affinity, it is able to interact with three receptors (IGF-I-receptor, insulin receptor, and IGF-II-receptor) and six binding proteins (IGFBP 1–6). To interact with each of the above objects, the IGF-I molecule contains individual structural determinants—binding domains (BD) providing strict specificity of interaction with them. Responsible for the IGF-I biological effects and binding with IGF-I-receptor is α-domain, for binding with insulin receptor—β-, EGF-II—γ-, while with all BP—δ-BD, respectively. Results of experimental study of binding domains not always can be estimated unanimously. The proposed by the author system of criteria for evaluation of changes in affinity of the IGF-I analogies allows unraveling the structural organization of each of the domains and tracing dependence on it of the peptide affinity to the particular object. This work considers composition, organization, and principle of formation of affinity of three binding IGF-I domains (α-, γ-, and δ-BD). The α-domain includes three tyrosines from three different molecule sites (B-24, C-31, and A-60) disposed spatially in the direct vicinity on its one surface. The β-domain also is considered as the domain participating in the high-affinity interaction; by composition and location in molecule it principally differs from α-BD, with the structural organization that so far has not been deciphered. Analyzed in detail is the key significance of the N-terminal site of the B-chain—the linear site of the domain—for binding of IGF-I with BP, functional heterogeneity of its constituent residues, and the characteristic principle of formation of affinity to BP. Analysis indicates a probability of the second δ-BD, quite possibly not the only one, and a high sensitivity of the domain to configuration of the IGH-I molecule surface. Structural organization and peculiarities of formation of affinity in the γ-domain are studied the best in three related peptides; it consists of two linearly exposed sites of A-chain. Composition of the site S-1 A (Phen8, Arg9, Ser10) provides a possibility of binding the ligand with IGF-I-receptor, while the level of affinity to it depends on the composition of S-2. The S-2 A composition (Arg14, Arg15) determines the low affinity of IGF-I to the IGF-II-receptor. The clear functioning of IGF-I and elimination of mixture of functions at the level of the binding activity depend on the spatial autonomy of BD of different nature, difference in structural organization of each of the domains, and a peculiarity of principles of formation of affinity in each case. The spatial coordination of several BD sites is the condition for transmission of the “structural signal“ by regulatory peptide. The performed analysis provides the direct notion of dependence of the binding ability of the IGF-I molecule that has BD of different nature on their structural peculiarities and allows using the revealed regularities at searching for BD in the newly discovered insulinlike peptides.  相似文献   

17.
To examine a possible role for IGF-II in the regulation of IGF-I receptors we measured 125I-IGF-I binding on IM-9 cells following pre-incubation with IGF-II/IGF-I mixtures, purified MSA (a rat IGF-II-like peptide), pure IGF-I, or insulin. Whereas all preparations tested induced down-regulation of IGF-I binding after 20 hours, distinct differences were noted after six hour pre-incubation: IGF-I (100 ng/ml) and insulin (1 microgram/ml) both induced down-regulation of IGF-I binding (15 +/- 2% and 19 +/- 2% respectively). However, a mixture of IGF-II and IGF-I (100 ng/ml each) induced consistent up-regulation of IGF-I binding (16 +/- 2%) (mean +/- SE, n = 14), and a preparation enriched in IGF-II (250 ng/ml IGF-II and 75 ng/ml IGF-I) induced 20 +/- 5% (n = 3) up-regulation at six hours. Purified MSA (200 ng/ml) induced 15% up-regulation of IGF-I binding at six hours. Scatchard analysis of displacement curves showed that increased binding was due to loss of low affinity binding, with enhancement of high affinity sites. The up-regulation of IGF-I binding was unaffected by treatment with 0.1 mM cycloheximide, but was blunted by 5 microM colchicine. It is concluded that 1. IGF-II induces up-regulation of IGF-I receptors on IM-9 cells following 6 hour pre-incubation; 2. This phenomenon is not mimicked by the structurally-related peptides IGF-I or insulin; The up-regulation is due to enhanced high affinity binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two somatomedin-like peptides were extracted from Cohn fraction IV of human plasma and brought to homogeneity: one focused at pH 7.8 and the other at pH less than 5.6. Each consisted of two peptide chains interlinked by disulphide bonds. The basic peptide was identical to insulin-like growth factor I (IGF-I) and had a single cleavage in the C-domain before Arg37 [IGF-I(Arg36cl)]. The acid peptide showed identity with IGF-II, with a cleavage in the B-domain before Arg30 [IGF-II(Ser29cl)]. The effects of these cleavages on the characteristics of binding to type I and type II receptor sites, to binding proteins and to antibodies was studied. Binding of IGF-I(Arg36cl) to antibodies directed against the B-domain or against the AD-domain of IGF-I was the same as IGF-I binding. Thus the cleavage does not influence these antigenic sites. In contrast, binding of IGF-I(Arg36cl) to the type I receptor on human and bovine placental cell membranes was markedly decreased compared with IGF-I binding. Binding to the insulin receptor on human placental cell membranes was slightly diminished, whereas the interaction with specific type II receptors on bovine placental cell membranes was unaffected. There was only a minor influence of the cleavage on the region involved in binding to binding proteins. The cleavage in IGF-II(Ser29cl) diminished binding to antibodies directed against the C-domain of IGF-II, compared with binding of IGF-II itself. Binding to receptors (type I and type II) was changed less profoundly. With 125I-labelled IGF-II(Ser29cl), less insulin was needed in order to obtain 50% displacement of the tracer compared with displacement of 125I-labelled IGF-II. The cleaved form of IGF-II probably has a greater affinity towards the common receptor population than does native IGF-II. Binding to binding proteins was not affected by the cleavage in IGF-II.  相似文献   

19.
Insulin and the insulin-like growth factors (IGFs) bind with high affinity to their cognate receptor and with lower affinity to the noncognate receptor. The major structural difference between insulin and the IGFs is that the IGFs are single chain polypeptides containing A-, B-, C-, and D-domains, whereas the insulin molecule contains separate A- and B-chains. The C-domain of IGF-I is critical for high affinity binding to the insulin-like growth factor I receptor, and lack of a C-domain largely explains the low affinity of insulin for the insulin-like growth factor I receptor. It is less clear why the IGFs have lower affinity for the insulin receptor. In this study, 24 insulin analogues and four IGF analogues were expressed and analyzed to explore the role of amino acid differences in the A- and B-domains between insulin and the IGFs in binding affinity for the insulin receptor. Using the information obtained from single substituted analogues, four multiple substituted analogues were produced. A "quadruple insulin" analogue ([Phe(A8), Ser(A10), Thr(B5), Gln(B16)]Ins) showed affinity as IGF-I for the insulin receptor, and a "sextuple insulin" analogue ([Phe(A8), Ser(A10), Thr(A18), Thr(B5), Thr(B14), Gln(B16)]Ins) showed an affinity close to that of IGF-II for the insulin receptor, whereas a "quadruple IGF-I" analogue ([His(4), Tyr(15), Thr(49), Ile(51)]IGF-I) and a "sextuple IGF-II" analogue ([His(7), Ala(16), Tyr(18), Thr(48), Ile(50), Asn(58)]IGF-II) showed affinities similar to that of insulin for the insulin receptor. The mitogenic potency of these analogues correlated well with the binding properties. Thus, a small number of A- and B-domain substitutions that map to the IGF surface equivalent to the classical binding surface of insulin weaken two hotspots that bind to the insulin receptor site 1.  相似文献   

20.
Insulin-like growth factor II (IGF-II) is a peptide growth factor that is homologous to both insulin-like growth factor I (IGF-I) and insulin and plays an important role in embryonic development and carcinogenesis. IGF-II is believed to mediate its cellular signaling via the transmembrane tyrosine kinase type 1 insulin-like growth factor receptor (IGF-I-R), which is also the receptor for IGF-I. Earlier studies with both cultured cells and transgenic mice, however, have suggested that in the embryo the insulin receptor (IR) may also be a receptor for IGF-II. In most cells and tissues, IR binds IGF-II with relatively low affinity. The IR is expressed in two isoforms (IR-A and IR-B) differing by 12 amino acids due to the alternative splicing of exon 11. In the present study we found that IR-A but not IR-B bound IGF-II with an affinity close to that of insulin. Moreover, IGF-II bound to IR-A with an affinity equal to that of IGF-II binding to the IGF-I-R. Activation of IR-A by insulin led primarily to metabolic effects, whereas activation of IR-A by IGF-II led primarily to mitogenic effects. These differences in the biological effects of IR-A when activated by either IGF-II or insulin were associated with differential recruitment and activation of intracellular substrates. IR-A was preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney and had a relatively increased proportion of isoform A. IR-A expression was also increased in several tumors including those of the breast and colon. These data indicate, therefore, that there are two receptors for IGF-II, both IGF-I-R and IR-A. Further, they suggest that interaction of IGF-II with IR-A may play a role both in fetal growth and cancer biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号