首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas sp. strain ST-200 grew on indole as a sole carbon source. The minimal inhibitory concentration of indole was 0.3 mg/ml for ST-200. However, ST-200 grew in a persolvent fermentation system containing a large amount of indole (a medium containing 20% by vol. diphenylmethane and 4 mg/ml indole), because most of the indole was partitioned in the organic solvent layer. When the organism was grown in the medium containing indole at 1 mg/ml in the presence of diphenylmethane, more than 98% of the indole was consumed after 48 h. Isatic acid (0.4 mg/ml) and isatin (0.03 mg/ml) were produced as the metabolites in the aqueous medium layer. Received: September 12, 1996 / Accepted: January 2, 1997  相似文献   

2.
Summary Wild-type cultures of Aspergillus niger produced a basal level of β-fructofuranosidase on glucose of 1 IU l−1 h−1. In contrast, a catabolite-derepressed mutant strain of the same organism produced a markedly higher level (25 IU l−1 h−1) of this enzyme when grown on the same carbon source. Wheat bran induced both the wild type (252 IU l−1 h−1) and the mutant strain (516 IU l−1 h−1) to produce 252- to 516-fold higher levels of this enzyme than was observed with the wild-type grown on glucose and was the best carbon source. When corn steep liquor served as a nitrogen source, the wild-type organism showed a higher activity of enzyme on monosaccharides and disaccharides comparable to that produced by corncobs in the basal medium and that mutant was a potentially improved (> 2-fold) organism for the production of β-fructofuranosidase on all carbon sources. Enhanced substrate consumption and product formation kinetic parameters suggest that the mutant organism may be exploited for bulk production of this useful enzyme.  相似文献   

3.
Summary Inulinase activity produced by a mixed culture of Aspergillus niger and Kluyveromyces marxianus growing on Jerusalem artichoke powder was investigated. Inulinase produced by this mixed culture had a higher invertase-type activity than inulinase from respective monocultures. When hydrolysis was carried out at 50°C with Jerusalem artichoke exctract (total sugar 16% w/v) at pH 5.0, 90% hydrolysis was achieved after 4 h with 5% v/v of crude cell free enzyme preparation.  相似文献   

4.
Sangavai  C.  Chellapandi  P. 《Amino acids》2019,51(9):1397-1407

Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography–mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone–butanol–ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.

  相似文献   

5.
This article reports the cell‐free expression of functional Lipase B from Candida antarctica (CalB) in an Escherichia coli extract. Although most of the cell‐free synthesized CalB was insoluble under conventional reaction conditions, the combined use of molecular chaperones led to the soluble expression of CalB. In addition, the functional enzyme was generated by applying the optimal redox potential. When examined using p‐nitrophenyl palmitate as a substrate, the specific activity of the cell‐free synthesized CalB was higher than that of the reference protein produced in Pichia pastoris. These results highlight the potential of cell‐free protein synthesis technology as a powerful platform for the rapid expression, screening and analysis of industrially important enzymes. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
The ultrastructure of cells of Acidiphilium rubrum, which is an acidophilic aerobic photosynthetic bacterium containing zinc-complexed bacteriochlorophyll a, was studied by electron microscopy with the rapid substitution technique. Thin-section electron microscopy indicated that any type of internal photosynthetic membranes was not present in this organism despite a relatively high content of the photopigment. The majority of cells had poly-β-hydroxybutyrate granules and electron-dense spherical bodies identified as being polyphosphate granules. When the organism was grown chemotrophically with 0.1% FeSO4, it produced another group of electron-dense granules that were associated with the inner part of the cytoplasmic membrane. An energy-dispersive X-ray analysis showed that these membrane-bound, electron-dense granules contained iron. Received: 24 November 1999 / Accepted: 5 January 2000  相似文献   

7.
The microbial production, by the genus Rhizopus, of a gaseous saturated-hydrocarbon mixture was studied under aerobic conditions. Rhizopus strains, comprising 13 strains of 9 species, were tested as to their ability to produce a gaseous hydrocarbon mixture. Except for one strain, all the strains tested produced more than two kinds of gaseous hydrocarbons simultaneously when grown in nutrient broth containing glucose. Rhizopus japonicus IFO 4758 was selected as being typical of these producers of mixed gaseous hydrocarbons. When this organism was cultivated in a synthetic medium supplemented with l-cysteine under aerobic conditions, the maximum production of the total gaseous hydrocarbon mixture reached ca. 10 nl/ml culture broth/hr. The gaseous hydrocarbon mixture produced was composed mainly of paraffin hydrocarbons, i.e., ca. 74% pentane, ca. 16% propane and a trace amount of methane. The ratios of saturated to unsaturated, and even to odd number hydrocarbons produced by this fungus were 95 : 5 and 90: 10, respectively. The biosynthetic pathways for the production of these gases are discussed in comparison with the biosynthetic pathways for ethylene and isobutene in microorganisms.  相似文献   

8.
Previous work showed that Methanobacillus omelianskii was a mixed culture of an ethanol-oxidizing organism called S organism and a hydrogen-utilizing methane bacterium, strain MOH. S organism grows poorly on ethanol unless a hydrogen-utilizing methanogenic bacterium is included to utilize the H(2) produced during growth. Further studies have shown that, among many substrates tested, only ethanol, n-propanol, n-butanol, isobutanol, n-pentanol, acetaldehyde, oxalacetate, and pyruvate are fermented by S organism, either alone or in combination with Methanobacterium ruminantium. It grew better in pure culture with pyruvate than with alcohols. H(2) gas phase inhibited growth on pyruvate as well as on alcohol. When grown alone on pyruvate, S organism produced mainly acetate, ethanol, and CO(2), in addition to a small amount of H(2). When combined with M. ruminantium, no H(2) and very little ethanol were produced and acetate production was increased. When M. ruminantium was present, electrons from pyruvate oxidation by S organism were channeled almost entirely to H(2) and hence to methane formation rather than ethanol. Also, S organism utilized more pyruvate when grown with M. ruminantium. Attempts to obtain better growth of S organism on ethanol by addition of many possible electron acceptors were unsuccessful. It grew best between 32 and 45 C, had a per cent guanine plus cytosine content of deoxyribonucleic acid bases of 47.27 +/- 0.1, contained no cytochrome, and could be grown on a defined medium with pyruvate as the energy and carbon source and with (NH(4))(2)SO(4) as the main nitrogen source. These and other results suggest that S organism belongs in a new genus, but assignment of a definite taxonomic status should await isolation and characterization of more strains.  相似文献   

9.
Microlunatus phosphovorus is an activated-sludge bacterium with high levels of phosphorus-accumulating activity and phosphate uptake and release activities. Thus, it is an interesting model organism to study biological phosphorus removal. However, there are no studies demonstrating the polyhydroxyalkanoate (PHA) storage capability of M. phosphovorus, which is surprising for a polyphosphate-accumulating organism. This study investigates in detail the PHA storage behavior of M. phosphovorus under different growth conditions and using different carbon sources. Pure culture studies in batch-growth systems were conducted in shake-flasks and in a bioreactor, using chemically defined growth media with glucose as the sole carbon source. A batch-growth system with anaerobic–aerobic cycles and varying concentrations of glucose or acetate as the sole carbon source, similar to enhanced biological phosphorus removal processes, was also employed. The results of this study demonstrate for the first time that M. phosphovorus produces significant amounts of PHAs under various growth conditions and with different carbon sources. When the PHA productions of all cultivations were compared, poly(3-hydroxybutyrate) (PHB), the major PHA polymer, was produced at about 20–30% of the cellular dry weight. The highest PHB production was observed as 1,421 mg/l in batch-growth systems with anaerobic–aerobic cycles and at 4 g/l initial glucose concentration. In light of these key results regarding the growth physiology and PHA-production capability of M. phosphovorus, it can be concluded that this organism could be a good candidate for microbial PHA production because of its advantages of easy growth, high biomass and PHB yield on substrate and no significant production of fermentative byproducts.  相似文献   

10.
Plant cyclopeptides are a large group of small molecule metabolites found in a wide variety of plants, including traditional Chinese medicinal plants. Many of the cyclopeptides have highly unusual structures and potent biological activities. However, the majority of the cyclopeptides have not been studied for their biosynthetic mechanisms. In this study, we have established a culture system for the biosynthetic study of heterophyllin B (HB), a cyclopeptide produced by the medicinal plant Pseudostellaria heterophylla. We first developed a shoot culture of P. heterophylla that produced HB consistently under laboratory conditions. Using 14C-labeled proline as tracer, we showed that labeled HB was produced by the cultured shoots, indicating that this system has de novo biosynthetic activity. Next, we chemically synthesized HB’s linear peptide precursor (LHB) and the N-acetyl cysteamine thioester of LHB (LHB-SNAC). When LHB-SNAC was incubated with total cell free extracts of the cultured shoots, a small amount of cyclized product (HB), in addition to the hydrolyzed product (LHB), was produced. The in vivo and in vitro results demonstrate the presence of an HB biosynthetic system, which provides insight into the molecular mechanism for plant cyclopeptide biosynthesis.  相似文献   

11.
Saccharomyces cerevisiae strain 14-12 is a highly ethanol-tolerant organism. It can grow in the presence of 13% ethanol but growth is completely prevented at 14% ethanol. A relationship was detected between yeast lipids and ethanol tolerance. A gradual decrease of lipid content was recorded as the concentration of supplemented ethanol increased. Moreover, free fatty acids were comparatively decreased in these lipid extracts. When separately added to media with 14% ethanol different lipids produced varied stimulatory effects on yeast growth. Maximum yield of yeast growth was obtained at 14% ethanol in the presence of lecithin, palmitic acid and cholesterol. Yeast lipids produced in the presence of these fractions are characterized by a relatively high percentage of free fatty acids. The change in the percentage of free fatty acids was shown to be the controlling factor in ethanol tolerance.  相似文献   

12.
Chaetomium cellulolyticum, a newly isolated cellulolytic fungus, showed 50–100% faster growth rates and over 80% more final biomass-protein formation than Trichoderma viride, a well-known high cellulase-producing cellulolytic organism, when cultivated on Solka-floc (a purified, predominantly amorphorous form of cellulose) or partially delignified sawdust (consisting of a mixture of hardwoods) as the sole-carbon source in the fermentation media. However, in both cases, T. viride produced much higher quantities of free cellulases at faster rates and also degraded more substrate than C. cellulolyticum. It is concluded that the synthesis mechanisms and/or the nature of the cellulase complexes of the two types of organisms are quite different such that C. cellulolyticum is more optimal for single-cell protein (SCP) production, while T. viride is more optimal for the production of extracellular cellulases. It was also found that the amino acid composition of C. cellulolyticum is generally better than that of T. viride and compares favorably with those of the FAO reference protein, alfalfa, and soya meal. In addition, preliminary feeding trials on rats have shown no adverse effects of the SCP produced by C. cellulolyticum fermentations.  相似文献   

13.
Summary Effects of nutritional and cultural conditions on cell growth and phosphatase production byAspergillus ficuum were studied.A. ficuum produced high levels of phosphatases when grown on a basal medium that contained a minimal amount (2 mg/100 ml) of phosphorus in an acidic growth medium. The organism produced a nonspecific acid phosphomonoesterase rather than phytin-specific phosphatase. The enzyme hydrolyzed a variety of phosphates and produced orthophosphate. The rate of phosphate hydrolysis was dependent on the pH of the reaction, where the pH optimum for acid phosphatase was 2.5 and that for phytase was 5.0. The organism slowly released the phosphatase, and the enzyme activity in the growth medium increased continually during a one-month growth period. For a high level of phosphatase production, low levels (1–5 mg%) of initial phosphorus were necessary and polyphosphates were the desired form rather than the monophosphate. The addition of surfactants, such as polyoxyethylene ethers and sodium oleate, to fungal culture medium markedly increased the level of phosphatase production.  相似文献   

14.
The metabolism of Spironucleus vortens, a parasitic, diplomonad flagellate related to Giardia intestinalis, was investigated using a combination of membrane inlet mass spectrometry, 1H NMR, 13C NMR, bioscreen continuous growth monitoring, and ion exchange chromatography. The products of glucose-fuelled and endogenous metabolism were identified by 1H NMR and 13C NMR as ethanol, acetate, alanine and lactate. Mass spectrometric monitoring of gas metabolism in buffered cell suspensions showed that glucose and ethanol could be used by S. vortens as energy-generating substrates, but bioscreen automated monitoring of growth in culture medium, as well as NMR analyses, suggested that neither of these compounds are the substrates of choice for this organism. Ion-exchange chromatographic analyses of free amino-acid and amino-acid hydrolysate of growth medium revealed that, despite the availability of large pools of free amino-acids in the medium, S. vortens hydrolysed large amounts of proteins during growth. The organism produced alanine and aspartate, and utilised lysine, arginine, leucine, cysteine and urea. However, mass spectrometric and bioscreen investigations showed that addition of the utilised amino acids to diluted culture medium did not induce any significant increase in metabolic or growth rates. Moreover, as no significant amounts of ornithine were produced, and addition of arginine under aerobic conditions did not generate NO production, there was no evidence of the presence of an energy-generating, arginine dihydrolase pathway in S. vortens under in vitro conditions.  相似文献   

15.
The formation of the arginine dihydrolase pathway enzymes inLactobacillus buchneri NCDO110, a heterofermentative organism, was investigated. The specific activities of arginine deiminase, ornithine transcarbamylase, and carbamate kinase were higher in galactose-grown cells than in glucose- or sucrose-grown cells in the early stationary phase of growth. The addition of arginine to growing cells increased the specific activity of these three enzymes with all growth sugars. The specific activities of the enzymes decreased during the stationary phase of growth when the sugar-grown cells was galactose. When glucose was virtually exhausted from the medium, the activities of the three enzymes were not altered. This enzymic system was not repressed by glucose, and these results are different from those obtained withL. leichmanni, homofermentative organism.Dedicated to Dr. Luis F. Leloir on the occasion of his 80th birthday, 6 September 1986.Member of the Scientific Researcher's Career of theConsejo Nacional de Investigaciones Cientificas Ténicas (CONICET) Argentina.  相似文献   

16.
Growth of the thermotolerant methylotrophic Bacillus strain TS1 in methanol-limited chemostat culture showed that the substrate was oxidized solely to biomass and CO2. When a pulse of methanol was added to the growth vessel anabolism could be shown to be dissociated from catabolism for a transient period of time. Present data shows that when the organism was grown with a limitation other than carbon, some of the substrate was channelled into metabolite over-production. When the organism was grown under N-limitation 2-oxoglutarate accumulated in the culture medium in small amounts whilst acetate accumulated under all carbon excess conditions. Although the average carbon recovery was 92%, analysis of the culture filtrates for other metabolites failed to show significant amounts of any individual product above those detected in carbon-limited growth comditions. The results are discussed in relation to published data.  相似文献   

17.
Streptococcus mutants 6715 was grown in trypticase soy broth and chemically defined media. When compared by cellular mass, DNA content, acid production, or glucosyltransferase (GTase) production, the growth parameters were nearly identical. The doubling time for the organism grown in either medium was approximately 75 min. The extracellular glucosyltransferase produced byS. mutans 6715 grown in both media was purified from the culture supernatant with nearly total recovery and a degree of purification approximately 74-fold. Apparent proteolytic degradation of the enzyme was prevented by nitriloacetate. The temperature effects showed typical loss of enzymatic activity from 37° to 60°C. When the GTase was heated above 60°C there was partial restoration of activity. Immunological studies were used to establish the relationship between the enzymatically active proteins separated by gel filtration chromatography.  相似文献   

18.
Extraction of medium after incubation of the fungus, Cunninghamella elegans, with 0.03% (w/v) 1-methylnaphthalene produced mainly 1-hydroxymethylnaphthalene together with some 1-naphthoic acid and hydroxynaphthoic acid. Higher concentrations of substrate were inhibitory to biotransformation. Similar incubations with 1-naphtoic acid as substrate resulted in reduction of the carboxyl group to give 1-hydroxymethylnaphthalene. When 6-methylquinoline was used, the main product was 6-hydroxymethylquinoline but also some quinoline-6-carboxylic acid and some 6-methylquinoline-N-oxide were identified. In a 2-l fermenter 2.5 g substrate was transformed in 324 h. The 6-hydroxymethylquinoline was also produced by reduction of quinoline-6-carboxylic acid by the organism. Received: 9 March 1998 / Received revision: 15 June 1998 / Accepted: 19 June 1998  相似文献   

19.
Rhizoctonia bataticola produced oxalic acid in vitro and in vivo during pathogenesis of patato tuber. Polygalacturonase (PG) was also detected in culture filtrates of the rot-causing organism. Levels of maceration and cell death in tuber tissue were higher when a mixture of oxalic acid and PG was used than when either oxalic acid or PG were used alone.  相似文献   

20.
The ethyl carbamate concentration of commercial ume liqueur products was studied, and a method of reducing it was examined from the viewpoint of antioxidation. The average ethyl carbamate concentration across 38 ume liqueur products was 0.12 mg/l (0.02–0.33 mg/l). When potassium metabisulfite was added to a concentration of 0–1,000 ppm during production, the generation of ethyl carbamate was reduced in a concentration-dependent manner, but when the amount of potassium metabisulfite added was below the maximum level allowed under the Japanese Food Sanitation Act, the reduction was only 27%. When ume liqueurs were produced under deoxygenated conditions created using an oxygen absorber, the ethyl carbamate concentration was reduced by up to 47% as compared with the control group, probably due mainly to a reduction in free hydrogen cyanide. When ume liqueur was produced in an oxygen atmosphere, the ethyl carbamate concentration increased by up to 50% as compared with the control group. Thus, oxygen may be involved in the generation of ethyl carbamate in ume liqueur production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号