首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim was to investigate the distribution of CD2(+), CD4(+) and CD8(+) lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium following pre-ovulatory insemination and during early pregnancy. Crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire) were inseminated once at 15-20 h before ovulation. The sows were slaughtered at 5-6h (group I, n=4) after AI or at 20-25 h (group II, n=4) and 70 h (group III, n=4) after ovulation, day 11 (group IV, day 1=first day of standing oestrus, n=3) and day 19 (group V, n=3). Uterine horns were flushed to control for the presence of spermatozoa and neutrophils (groups I-IV) and/or for recovery of oocytes and/or embryos (groups II-IV, control of pregnancy). Cryofixed mesometrial uterine samples were analysed by immunohistochemistry with an avidin-biotin-peroxidase method using monoclonal antibodies to lymphocyte subpopulations and MHC class II molecules. The surface (SE) and glandular (GE) epithelia as well as connective tissue layers in subepithelial (SL) and glandular (GL) areas were examined by light microscopy. Taking all groups and different tissue layers together, the most commonly observed positive cells were CD2(+) cells (P相似文献   

2.
The objective of this experiment was to identify the optimal time of insemination relative to the time of ovulation, based on ultrasonographic detection of embryonic survival at 10 days after ovulation, number of sows farrowing, and litter size. Furthermore, the possible value of the interval from weaning to onset of estrus for prediction of the time of ovulation was examined. Crossbred sows (n = 143) that had farrowed 2 to 9 litters were weaned (Day 0) and observed for estrus every 8 h from Day 3 until end of estrus. Ultrasonography was performed every 6 h, from 12 h after onset of estrus until ovulation had been observed. The sows were inseminated once at various time intervals from ovulation. At Day 16, 25 of the sows were slaughtered and their uteri were flushed for embryos. In the remaining sows, the number of viable and dead piglets and mummified fetuses per sow was recorded at farrowing, with the sum of the 3 constituting the total number of piglets born per sow. The highest number of embryos recovered per sow was found after insemination during the interval from 24 h before to 4 h after ovulation. The lowest frequency of non-pregnant sows and the highest total number of piglets born per sow were found after insemination from 28 h before to 4 h after ovulation. Consequently, the optimal time for insemination was found to be in the interval 28 h before to 4 h after ovulation. The interval from weaning to onset of estrus and from onset of estrus to ovulation were negatively correlated, allowing a rough prediction of the time of ovulation from the interval from weaning to onset of estrus.  相似文献   

3.
The aim of present study was to investigate the influence of pre-compared with post-ovulatory insemination, on the distribution of spermatozoa in the oviduct, the accessory sperm counts on the zona pellucida and early embryonic development. Thirty-six crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire) were artificially inseminated once either at 20-15 h before (group AIB) or at 15-20 h after (group AIA) ovulation by using a pooled semen of two boars. Thereafter, they were randomly allocated to one of five groups: slaughter at 5-6h after AI (group I-AIB), at 20-25 h after ovulation (groups II-AIB and II-AIA), at 70 h after ovulation (groups III-AIB and III-AIA), on day 11 (groups IV-AIB and IV-AIA, first day of standing oestrus=day 1) and on day 19 (groups V-AIB and V-AIA).The plasma levels of oestradiol-17beta and progesterone differed significantly (P相似文献   

4.
Boar semen can be successfully frozen - highly packed - in small containers (medium-straw, MS or MiniFlatPack, MFP). The use of deep intra-uterine artificial insemination (DIU-AI) can make possible the deposition of small volumes of this thawed, non re-extended semen deeply intra-uterine, close to the sperm reservoir. The present experiments studied the fertility achieved after single or double DIU-AI per oestrus, with special attention to the interval between AI and spontaneous ovulation. Semen from two boars of proven fertility was frozen in MS or MFP holding 1 x 10(9) total spermatozoa. Multiparous (2-5 parity, n=42) crossbred sows were checked for oestrous behaviour after weaning and the occurrence of spontaneous ovulation was checked with transrectal ultrasonography (TUS) to establish the mean interval between onset of oestrus (OO) and ovulation which was found to be when approximately 2/3 of the oestrus period has passed. The sows were, in the following standing oestrus, subjected to DIU-AI using thawed semen from either MS (n=20) or MFP (n=22), inseminated without further re-extension. The sows were randomly allotted to one of three groups: (1) single DIU-AI 8 h before expected ovulation (control group, n=19); (2) single DIU-AI 4 h before expected ovulation (treatment group S, n=15); and (3) double DIU-AI 12 and 4 h before expected ovulation (treatment group D, n=8). Occurrence of spontaneous ovulation was confirmed by TUS, performed as during the first oestrous period and used to determine the real interval of DIU-AI and ovulation. Pregnancy was also confirmed by TUS 28 days after OO in those sows not returning to oestrus. These sows were slaughtered (30-45 days of pregnancy), and the appearance of the reproductive tract and ovaries, the number of live and dead foetuses, of implantation sites and of corpora lutea (CL) were recorded. Sows (n=9) returning to oestrus ("open") were re-inseminated (either once [n=4] or twice [n=5]) the following oestrus with either MFP (n=5) or MS (n=4) and slaughtered 12-14 h post-ovulation for recovery of tubal oocytes and of spermatozoa from the uterotubal junctions (sperm reservoir), to assess the degree of effectiveness of sperm transport. Post-thaw sperm motility was 44.3+/-3.21% in MFP and 42.8+/-0.72% for MS (LSmean+/-S.E.M., n.s.), and did not significantly change from thawing to AI. The DIU-AI could be performed in all sows, but insertion was difficult (slow >5 min) in 5/42 sows. Four of these sows returned to oestrus. Pregnancy rate averaged 35% (group D: 25%, group S: 40%, control: 36%, n.s.). The interval between DIU-AIs and spontaneous ovulation varied largely, ranging from -13 to -3 h for group C, for group S from -11 to +3 h and for group D from -17 to -4 h. Pregnancy rates were clearly related to the interval DIU-AI and ovulation, being highest (60%, 12/20) when AI occurred between 8 and 4 h before spontaneous (not expected) ovulation. The number of implantation sites ranged 6-22 (n.s. among groups), and the number of alive foetuses 2-11 (n.s. among groups). Implantation rate (total number of implantations/CL) ranged 48.0-69.7% being highest in the D-group (P<0.05). The examination of the "open" sows slaughtered 12-14 h post-ovulation revealed few recovered oocytes were fertilized (approximately 10%). Only 40% of oocytes had spermatozoa bound to the zona pellucida, not more than two spermatozoa per oocyte. Moreover, low sperm numbers (approximately 4000) were found in the sperm reservoirs (UTJs), irrespective of using single or double DIU-AI (n.s.). The highest values (P<0.05) for these variables were recorded when DIU-AI (either single or double [second AI]) occurred 4-8 h before ovulation, especially when MFP-semen was used (P<0.05). In conclusion: (1) DIU-AI can be easily performed in most sows; (2) pregnancies can be obtained by the DIU-AI of low volumes of highly concentrated frozen-thawed boar semen, once or twice during oestrus, but fertility is still low, probably owing to an unsatisfactory sperm transport when expected and real ovulation differ; and (3) fertility is related to the interval DIU-AI and ovulation which should be -8 to -4 h of spontaneous ovulation and to the package, MFP having shown better results in vivo. The results stress the need for careful, and frequent, control of oestrus signs.  相似文献   

5.
The aim of this study was to investigate the distribution of leukocytes and the morphological changes of the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4 +/- 0.7 (mean +/- S.D.) were used. Blood samples were collected from the jugular vein 1h before slaughter for analyses of oestradiol-17beta and progesterone levels. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus, prooestrus, oestrus, early dioestrus and dioestrus, were fixed, embedded in plastic resin and stained with toluidine blue. The surface and glandular epithelium as well as subepithelial and glandular connective tissue layers were examined by light microscopy.The significantly highest surface and the glandular epithelium were observed at oestrus and dioestrus, respectively.The largest number of capillaries (underneath the surface epithelium) was found at oestrus. In the surface epithelium, the largest number of intraepithelial lymphocytes (IELs, round nucleus) was found at early dioestrus. The largest number of lymphocytes and macrophages within the glandular epithelium were found at early dioestrus and oestrus, respectively.In the subepithelial connective tissue layer, the most common type of leukocytes during all stages was the lymphocyte. The largest numbers of lymphocytes and neutrophils were found at oestrus while the largest number of eosinophils was found at dioestrus.The dominating cells of the immune system in the connective tissue of the glandular layer were lymphocytes and macrophages. The significantly largest numbers of lymphocytes and plasma cells were found at early dioestrus and dioestrus, respectively.The number of lymphocytes in the connective tissue of the glandular layer and the number of plasma cells in the subepithelial layer were positively correlated with the plasma level of progesterone (P < or = 0.05). The numbers of capillaries and neutrophils in the subepithelial layer underneath the surface epithelium as well as the number of macrophages in both surface and glandular epithelium were positively correlated with the plasma level of oestradiol-17beta (P < or = 0.05).In conclusion, the present study showed a variation in the infiltration and distribution of lymphocytes, neutrophils, eosinophils, macrophages, mast cells and plasma cells in the sow endometrium during different stages of the oestrous cycle. Also morphological parameters (e.g. height of surface and glandular epithelium, capillaries density and degree of oedema) varied throughout the oestrous cycle.  相似文献   

6.
The aim of this study was to investigate the distribution of leukocytes and the morphological changes of the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4+/-0.7 (mean+/-S.D.) were used. Blood samples were collected from the jugular vein 1 h before slaughter for analyses of oestradiol-17beta and progesterone levels. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus, prooestrus, oestrus, early dioestrus and dioestrus, were fixed, embedded in plastic resin and stained with toluidine blue. The surface and glandular epithelium as well as subepithelial and glandular connective tissue layers were examined by light microscopy (LM). The significantly highest surface and the glandular epithelium were observed at oestrus and dioestrus, respectively. The largest number of capillaries (underneath the surface epithelium) was found at oestrus. In the surface epithelium, the largest number of intraepithelial lymphocytes (IELs, round nucleus) was found at early dioestrus. The largest number of lymphocytes and macrophages within the glandular epithelium were found at early dioestrus and oestrus, respectively. In the subepithelial connective tissue layer, the most common type of leukocytes during all stages was the lymphocyte. The largest numbers of lymphocytes and neutrophils were found at oestrus while the largest number of eosinophils was found at dioestrus. The dominating cells of the immune system in the connective tissue of the glandular layer were lymphocytes and macrophages. The significantly largest numbers of lymphocytes and plasma cells were found at early dioestrus and dioestrus, respectively. The number of lymphocytes in the connective tissue of the glandular layer and the number of plasma cells in the subepithelial layer were positively correlated with the plasma level of progesterone (P < or = 0.05). The numbers of capillaries and neutrophils in the subepithelial layer underneath the surface epithelium as well as the number of macrophages in both surface and glandular epithelium were positively correlated with the plasma level of oestradiol-17beta (P < or = 0.05). In conclusion, the present study showed a variation om the infiltration and distrobution of lymphocytes, neutrophils, eosinophils, macrophages, mast cells, and plasma cells in the sow endometrium during different stages of the oestrous cycle. Also morphological parameters (e.g. height of surface and glandular epithelium, capillaries density and degree of oedema) varied throughout the oestrous cycle.  相似文献   

7.
Nissen  A.K.  Lehn-Jensen  H.  Hyttel  R  Greve  T. 《Acta veterinaria Scandinavica》1995,36(1):123-133
Follicular growth, chronology of ovulation and embryo morphology were compared in sows ovulating spontaneously and sows, in which the ovulation was attempted induced by hCG or GnRH. Indwelling catheters were placed on day 1 (weaning = day 0) in the ear veins of 18 sows, which were then randomly divided into 3 groups: a control group (N = 6), a group (N = 6) given 750 iu hCG (Physex®) im 76h after weaning (hCG group) and a group (N = 6) given 500 µg GnRH (Fertagyl®) im 76h (N = 3) or 100h after weaning (N = 3) (GnRH group). Follicular diameter and time of ovulation were monitored by ultrasonography every 4h from day 3 until ovulation or development of cysts by means of a sector scanner fitted with a 5.0/7.5 MHz multiangle probe. Heat detection was performed every 8h from day 3 until ovulation. On day 13, the sows were slaughtered, the number of corpora luteae (CL) was counted, and embryos were flushed from the uteri. The control group showed clear heat symptoms, and on day 3, the follicles were typically 3–7 mm and grew up to 7–10 mm over 2 days, where they remained for approximately 24h until ovulation took place 41h ± 9h after first sign of standing heat. The hCG group exhibited no signs of heat, and the follicles only reached 5–8 mm in diameter at time of ovulation, which occurred 40h ± lh after hCG-injection. The GnRH group exhibited inconsistent signs of heat, and the follicles reached a maximum size of 7–12 mm in diameter where they remained for more than 24h. Only 2 sows in this group ovulated within 84–92h after the GnRH injection, and development of bursa cysts and cystic follicles was a common finding. The average number of CL was 18.2 ±5.7 per sow (N = 16, range: 3–27) with no significant difference between the groups. Total embryo recovery was 79 ± 13 % with no significant difference between groups. The embryo diversity calculated as standard deviation of the maximum diameter was higher in the hCG group as compared with the control group. It is concluded that (1) transrectal ultrasonography can be used in sows for accurate assessment of follicular growth and ovulation; (2) the use of hCG results in lack of heat symptoms and reduced follicle size at the time of ovulation when injected 76h after weaning; (3) administration of a single injection of GnRH, if given before the first signs of heat, results in inconsistent heat symptoms and no or late ovulations.  相似文献   

8.
Ninety-two first-litter Dutch Landrace sows were inseminated at their first oestrus after weaning with diluted semen containing 2.3 x 10(9) motile sperm cells. Immediately before insemination of 46 randomly chosen sows, 2 x 10(8) fresh bovine leucocytes were added to the semen. All sows were slaughtered on Day 8, 9, or 10 after insemination. In the control group and leucocyte-treated group respectively, 41 and 39 sows were pregnant at slaughter. The average number of corpora lutea (+/- SEM) in pregnant animals was 15.72 +/- 0.60 and 15.22 +/- 0.61, respectively. The average number of embryos was 10.66 +/- 0.79 and 10.36 +/- 0.80, respectively. The addition of bovine leucocytes to semen had neither influence on the pregnancy rate, nor on the number of embryos during early pregnancy.  相似文献   

9.
Soede NM  Nissen AK  Kemp B 《Theriogenology》2000,53(4):1003-1011
The objective of the present study was to identify effects of the interval between insemination and ovulation in pigs on the sex ratio and sex ratio dispersion of offspring. Crossbred sows that had farrowed 2 to 9 litters were weaned (Day 0) and came into estrus between Days 3 and 7 after weaning. Ultrasonography was performed every 6 h, from 12 h after the onset of estrus until ovulation had been observed. The sows were inseminated once at various intervals from the onset of estrus. At farrowing, the numbers of viable piglets and dead piglets were recorded per sow. In four 12-h intervals between insemination and ovulation (36 to 24 h before ovulation, 24 to 12 h before ovulation, 12 to 0 h before ovulation and 0 to 12 h after ovulation), the total number of piglets was (mean+/-SEM) 10.8+/-1.2 (n=15); 13.4+/-0.7 (n=23); 13.2+/-0.9 (n=21); and 12.1+/-1.0 (n=16), respectively (P>0.05). The percentage of male piglets per litter in the four 12-h intervals was 52.1+/-3.6, 50.5+/-2.7, 54.9+/-2.8 and 47.8+/-4.5, respectively (P>0.05). Sex ratio was not influenced by litter size (P>0.05), and its distribution was normally dispersed (i.e., as expected under a binomial distribution) in all 4 intervals between insemination and ovulation (P>0.05).  相似文献   

10.
A breeding trial was conducted to evaluate the effect of insemination timing on the fertility of mares bred with frozen/thawed equine semen. One stallion and 60 reproductively sound, estrous-synchronized mares were included in the study. Mares were assigned to one of three groups (n = 20): 1) insemination with fresh semen every other day during estrus from detection of a 35-mm follicle until ovulation, 2) insemination with frozen/thawed semen every day during estrus from detection of a 35-mm follicle until ovulation or 3) insemination with frozen/thawed semen once, within 6 h after ovulation. Single-cycle 18-d pregnancy rates resulting from insemination with fresh semen (70%), preovulation insemination with frozen/thawed semen (60%) and postovulation insemination with frozen/thawed semen (55%) were not different (P > 0.05). Possibly, equivalent pregnancy rates could be achieved with frozen/thawed semen using either daily inseminations until ovulation occurs or frequent ovarian palpations with a single post-ovulation insemination. Further studies regarding the effect of insemination timing on stallion fertility are needed since the present investigation included only one stallion and a small number of mares.  相似文献   

11.
Semen from 3 stallions was extended using 2 methods (Kenney extender and a modified Kenney extender), slowly cooled, and stored for 41 ± 6 (s.d.) h before insemination. An insemination dose (40 ml) contained 1.5-2 billion spermatozoa. In the experiment, 26 mares were inseminated in 30 cycles. The pregnancy rate per cycle obtained with sperm stored in the Kenney extender was 87% (n=15). When the semen was extended with the modified extender, centrifuged and stored, the pregnancy rate was 60% (n=15). Inseminations were done every other day until ovulation was detected. If a mare ovulated more than 24 h after the last insemination, she was inseminated also after ovulation. The single-cycle pregnancy rate was 58% when the mares were inseminated only before ovulation (n=19) but the rate was 100% when the inseminations were done both before and after ovulation (n=9) or only after ovulation (n=2). The difference in pregnancy rates was significant (p<0.05), indicating that postovula-tory inseminations probably serve to ensure the pregnancies. The extending and handling methods used in this study resulted in a combined pregnancy rate of 73%, and appear thus to be useful for storing stallion semen for approximately 2 days.  相似文献   

12.
The aim of this study was to investigate the distribution of CD2+, CD4+, CD8+ lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4+/-0.7 (mean+/-S.D.) were used. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus (day 17, n=3), prooestrus (day 19, n=3), oestrus (day 1, n=3), early dioestrus (day 4, n=3) and dioestrus (days 11-12, n=3), were stored in a freezer at -70 degrees C until analysed by immunohistochemistry with an avidin-biotin peroxidase method using monoclonal antibodies to lymphocyte subpopulations and MHC class II molecules. The surface and glandular epithelium as well as connective tissue layers in subepithelial and glandular areas were examined by light microscopy.For the T lymphocyte subpopulations, all oestrous cycle stages and different tissue layers taken together, the most commonly observed cell type was CD2+ cells. The largest number of CD2+ cells within the surface and glandular epithelium were observed at oestrus and early dioestrus. In the surface epithelium, a larger number of CD8+ cells compared with CD4+ cells were observed and no CD4+ cells were found within the glandular epithelium at any stage of the oestrous cycle.In the subepithelial and glandular connective tissue layers, during the oestrus cycle stages, a larger number of CD4+ cells compared with CD8+ cells were found.Endothelial cells in the connective tissue generally expressed MHC class II. However, no obvious differences between oestrous cycle stages were observed. For other cells than endothelial cells, the result was as follows. In the surface epithelium, a large number of MHC class II expressing cells was observed at oestrus compared with the other stages. No MHC class II expressing cells were found at late dioestrus and dioestrus. MHC class II expressing cells were also found in the glandular epithelium, and in the subepithelial and glandular connective tissue layers during all oestrous cycle stages but with no significant differences between stages.In conclusion, the present study showed a variation in the distribution of T lymphocyte subpopulations (CD2+, CD4+ and CD8+) and MHC class II expressing cells in the sow endometrium during different stages of the oestrous cycle. Also a variation between different tissue layers was found. It is suggested that helper and cytotoxic function of the immune system have primary locations in different tissue layers of the endometrium.  相似文献   

13.
14.
The aim of the present study was to investigate the volume of and number of spermatozoa in semen backflow during and after insemination, and the effect of backflow on fertilisation results assessed at day 5 of pregnancy. Multiparous sows (n=140) were artificially inseminated with either (1, 3 or 6)×109 mixed spermatozoa from three boars in a constant volume of 80 ml. Backflow of semen was measured three times: during insemination (M1); during the first half hour after insemination (M2); and from 0.5 h until about 2.5 h after insemination (M3). Transrectal ultrasonography was performed at intervals of 4 h to determine the time of ovulation. Sows were sacrificed at 120±0.4 h after ovulation to assess the results of fertilisation. Every sow had some backflow and the variation in volume, and number of spermatozoa within the backflow was high. The average semen backflow within 2.5 h after insemination was 70±3.4% of the volume and 25±1.4% of the spermatozoa of the inseminated dosage. The concentration of the backflow (% of the inseminated dosage) decreased with time after insemination from 65% at M1 to 40% and 26% at M2 and M3, respectively. The correlations between volume and number of spermatozoa were high: r=0.97, r=0.73 and r=0.81 in M1, M2 and M3, respectively. More than 5% of the inseminated spermatozoa in backflow during insemination affected fertilisation negatively in those sows inseminated with 1×109 spermatozoa (P<0.05). Backflow after insemination had no effect on fertilisation results (P>0.05). Timing of insemination relative to ovulation and oestrus were not related to backflow during or after insemination (P>0.05). Of the sows which had backflow, those of parity 1 tended to have the highest proportion of sows with more than 5 ml backflow (47%; n=8 of 17) compared with sows from parity 2 and higher (24%; n=14 of 59) (P=0.075). It was concluded that excessive backflow of semen during insemination had a negative effect on fertilisation results when sows where inseminated with only 1×109 spermatozoa. Causes of variation in backflow between sows were not clearly identifiable.  相似文献   

15.
The aim of this study was to investigate the distribution of CD2(+), CD4(+), CD8(+) lymphocyte subpopulations and MHC class II expressing cells in the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4 +/- 0.7 (mean +/- S.D.) were used. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus (day 17, n = 3), prooestrus (day 19, n = 3), oestrus (day 1, n = 3), early dioestrus (day 4, n = 3) and dioestrus (days 11-12, n = 3), were stored in a freezer at -70 degrees C until analysed by immunohistochemistry with an avidin-biotin peroxidase method using monoclonal antibodies to lymphocyte subpopulations and MHC class II molecules. The surface and glandular epithelium as well as connective tissue layers in subepithelial and glandular areas were examined by light microscopy. For the T lymphocyte subpopulations, all oestrous cycle stages and different tissue layers taken together, the most commonly observed cell type was CD2(+) cells. The largest number of CD2(+) cells within the surface and glandular epithelium were observed at oestrus and early dioestrus. In the surface epithelium, a larger number of CD8(+) cells compared with CD4(+) cells were observed and no CD4(+) cells were found within the glandular epithelium at any stage of the oestrous cycle. In the subepithelial and glandular connective tissue layers, during the oestrus cycle stages, a larger number of CD4(+) cells compared with CD8(+) cells were found. Endothelial cells in the connective tissue generally expressed MHC class II. However, no obvious differences between oestrous cycle stages were observed. For other cells than endothelial cells, the result was as follows. In the surface epithelium, a large number of MHC class II expressing cells was observed at oestrus compared with the other stages. No MHC class II expressing cells were found at late dioestrus and dioestrus. MHC class II expressing cells were also found in the glandular epithelium, and in the subepithelial and glandular connective tissue layers during all oestrous cycle stages but with no significant differences between stages. In conclusion, the present study showed a variation in the distribution of T lymphocyte subpopulations (CD2(+), CD4(+) and CD8(+)) and MHC class II expressing cells in the sow endometrium during different stages of the oestrous cycle. Also a variation between different tissue layers was found. It is suggested that helper and cytotoxic function of the immune system have primary locations in different tissue layers of the endometrium.  相似文献   

16.
The effect of food deprivation on ova transport, hormonal profiles and metabolic changes was studied in 20 crossbred multiparous sows during their second oestrus after weaning. To determine the time of ovulation, transrectal ultrasonographic examination was performed. The sows were divided into 2 groups, one control group (C-group), which was fed according to Swedish standards, and one experimental group (E-group). The E-group sows were deprived of food from the first morning meal after ovulation until slaughter. Blood samples were collected every second hour from about 12 h before expected ovulation in the second oestrus after weaning until slaughter and were analysed for progesterone, prostaglandin F-metabolite, insulin, glucose, free fatty acids and triglycerides. All sows were slaughtered approximately 48 h after ovulation and the genital tract was recovered. The isthmic part of the oviduct was divided into 3 equally long segments and flushed separately with phosphate buffered saline (PBS). Uterine horns were also flushed with PBS. A significantly greater number of ova were found in the first and second part of the isthmus in the E-group (p = 0.05) while in the C-group most of the ova were found in the third part of the isthmus or the uterus (p = 0.01). The level of prostaglandin F-metabolite was significantly higher in the E-group compared with the C-group. The concentration of progesterone increased in both groups after ovulation but there were no significant differences between the groups. The other blood parameters showed that the food-deprived sows were in a catabolic state. The 48 h period of fasting results, directly or indirectly in an delayed ova transport, which may be due to a delayed relaxation in the smooth circular muscle layer of the isthmus.  相似文献   

17.
The relationship between vaginal temperature and ovulation time was studied in sows. The vaginal temperature was measured continuously between Day 4 and Day 10 after Altrenogest-treatment in 10 sows. Oestrus was checked with a vasectomized boar at 8-h intervals, and during oestrus, ovulation time was checked with transrectal ultrasonography at 2-h intervals between 07:00 h and 23:00 h. Two sows ovulated between 23:00 h and 07:00 h, and these sows were taken out of the experiment. In the eight remaining sows, a clear day/night rhythm in vaginal temperature was found: between 03:00 h and 09:00 h, vaginal temperature (LSM ± sem, corrected for sow) was on average 38.2 ± 0.01°C; between 15:00 h and 21:00 h, vaginal temperature was on average 38.5 ± 0.01°C (P < 0.001). Between 4 days before ovulation and 2 days after ovulation, no changes in temperature could be found that were related to ovulation time in any of the sows. Therefore, in sows, changes in vaginal temperature cannot be used as a predictor for ovulation time, and consequently cannot be used to predict the best time for insemination.  相似文献   

18.
The effect of intravenous cloprostenol treatment at the time of insemination on reproductive performance was consecutively evaluated in three different subpopulations of high producing lactating dairy cows: Study (1) early postpartum synchronized and fixed-time inseminated (about 50 days in milk) cows (n = 379: 187 control and 192 treated cows); Study (2) presumed high fertility cows first inseminated between 90 and 120 days postpartum (n = 248: 124 control and 124 treated cows); and Study (3) heat stressed repeat breeder cows (n = 183: 93 control and 90 treated cows). Data were analyzed using multiple regression methods. Study 1: Parity (primiparous versus multiparous), milk production, body condition score at AI, insemination season (cool versus warm period) and treatment were included in the analysis as potential factors affecting ovulation, double ovulation, return to estrus, and pregnancy to first AI and to second AI (first AI plus return AI) rates. Logistic regression analysis indicated that the final model for ovulation rate only included the interaction (P = 0.002) between insemination season and treatment. Cloprostenol treatment at insemination led to a 4.2-fold increase in the ovulation rate in cows inseminated during the warm period. There were no significant effects of treatment, parity, milk production, body score or the insemination season on the return to estrus rate. The only variables included in the final logistic model for double ovulation and pregnancy to first AI rates were treatment and season, respectively. Treatment led to a 2.6-fold increase (P = 0.001) in the double ovulation rate, whereas cows inseminated in the warm period were 2.1 times less likely (P = 0.007) to become pregnant at first AI compared to those inseminated in the cool season. The variables included in the final logistic model for the pregnancy rate to second AI were treatment and season. Cloprostenol given at AI increased the risk of pregnancy 1.9 times (P = 0.002), and cows inseminated during the warm season were two times less likely to become pregnant (P = 0.003). No significant interactions were found among these three dependent variables (double ovulation and pregnancy to first and to second AI rates). Study 2: Logistic regression analysis of all the dependent variables: return to estrus, and pregnancy to first and to second AI (first AI plus return to AI) rates indicated no significant effects of treatment, parity, days in milk, milk production or body score at AI. No significant interactions were found. Study 3: The final model for the pregnancy rate only included the interaction between parity (primiparous versus multiparous) and treatment. Days in milk, milk production and insemination number showed no significant effect on pregnancy rate. Cloprostenol treatment at insemination increased the pregnancy rate in primiparous repeat breeder cows (odds ratio: 3.6). The treatment group and parity showed significant (P < 0.0001) interaction. This interaction suggests that cloprostenol treatment of primiparous cows at insemination might enhance pregnancy yet have no effect in multiparous cows. Our findings indicate that cloprostenol administered at insemination promotes ovulation and double ovulation in lactating dairy cows. Cloprostenol treatment showed no benefit in cows with acceptable reproductive performance, suggesting that cloprostenol treatment at AI may only be useful in cows in which stress factors affect ovulation and in repeat breeder cows.  相似文献   

19.
The objectives of this study were to determine the optimal time of insemination in the pre-ovulatory period (from 32 to 0 h before ovulation) and to evaluate once-daily versus twice-daily inseminations in gilts. In Experiment 1, pre-puberal gilts (n=102) were observed for estrus every 8h and ultrasonography was performed every 8h from the onset of estrus to confirmation of ovulation. The gilts were inseminated once with 4 x 10(9) spermatozoa at various intervals prior to ovulation. Pregnancy detection was conducted 24 days after AI and gilts were slaughtered 4-6 days later. Corpora lutea and the number of viable embryos were counted and the embryo recovery rate was calculated (based on the percentage of corpora lutea). Inseminations performed <24h before ovulation resulted in a higher embryo recovery rate (P=0.02) and produced 2.1 more embryos (P=0.01) than inseminations >or=24h before ovulation. However, the pregnancy rate was reduced when inseminations were performed >16 h before ovulation (P=0.08). In Experiment 2, pre-puberal gilts (n=105) were observed for estrus every 12h and ultrasonography was performed every 12h from the onset of estrus to confirmation of ovulation. Gilts were inseminated (with 4 x 10(9) spermatozoa) 12h after the onset of estrus, with inseminations repeated either every 12h (twice-daily) or 24h (once-daily) during estrus. The gilts were allowed to farrow. There were no differences (between gilts bred twice-daily versus once-daily) for return to estrus rate (P=0.36) and adjusted farrowing rate (P=0.19). However, gilts inseminated once-daily had 1.2 piglets less than those inseminated twice-daily (P=0.09). In conclusion, gilts should be inseminated up to 16 h before ovulation, as intervals >16 h reduced pregnancy rate and litter size.  相似文献   

20.
This study demonstrates, in the artificial insemination of weaned sows, the advantage of isolating sows from contact with boars from weaning until the fourth day after weaning and then introducing a boar to elicit the estrous display before insemination. Weaned sows were isolated from boar stimulation during the immediate post-weaning period (Day 0 = weaning) until Day 4, when they were introduced to full boar contact. Sows were inseminated immediately upon display of oestrus shown by back pressure test (0 h) and 24 h later. Fertility data were collected after parturition. This "segregated service management" (SSM) resulted in significantly improved farrowing rate and litter size (P < 0.001) compared with the results in the group that had conventional continuous contact with the boar. All other measured performance indicators were similar between the groups. The benefit of SSM is believed to be due to artificial insemination being timed more closely to ovulation or to a more certain identification of true oestrus and/or improved sperm transport in the sow. SSM is recommended for enhancing the efficiency of boar-sow interaction to maximise fertility and fecundity at artificial insemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号