首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synovial macrophage polarization and inflammation are essential for osteoarthritis (OA) development, yet the molecular mechanisms and regulation responsible for the pathogenesis are still poorly understood. Here, we report that pseudolaric acid B (PAB) attenuated articular cartilage degeneration and synovitis during OA. PAB, a diterpene acid, specifically inhibited NF‐κB signalling and reduced the production of pro‐inflammatory cytokines, which further decreased M1 polarization and vessel formation. We further provide in vivo and in vitro evidences that PAB suppressed NF‐κB signalling by stabilizing PPARγ. Using PPARγ antagonist could abolish anti‐inflammatory effect of PAB and rescue the activation of NF‐κB signalling during OA. Our findings identify a previously unrecognized role of PAB in the regulation of OA and provide mechanisms by which PAB regulates NF‐κB signalling through PPARγ, which further suggest targeting synovial inflammation or inhibiting vessel formation at early stage could be an effective preventive strategy for OA.  相似文献   

2.
Inflammation is a major risk factor for osteoporosis, and reducing inflammatory levels is important for the prevention of osteoporosis. Although nuclear receptor 77 (Nur77) protects against inflammation in a variety of diseases, its role in osteoporosis is unknown. Therefore, the main purpose of this study was to investigate the osteoprotective and anti‐inflammatory effects of Nur77. The microCT and haematoxylin and eosin staining results indicated that knockout of Nur77 accelerated femoral bone loss in mice. The enzyme‐linked immunosorbent assay (ELISA) results showed that knockout of Nur77 increased the serum levels of hsCRP and IL‐6. The expression levels of NF‐κB, IL‐6, TNF‐α and osteoclastogenesis factors (TRAP, NFATC1, Car2, Ctsk) in the femurs of Nur77 knockout mice were increased significantly. Furthermore, in vitro, shNur77 promoted the differentiation of RAW264.7 cells into osteoclasts by activating NF‐κB, which was confirmed by PDTC treatment. Mechanistically, Nur77 inhibited osteoclast differentiation by inducing IκB‐α and suppressing IKK‐β. In RAW264.7 cells, overexpression of Nur77 alleviated inflammation induced by siIκB‐α, while siIKK‐β alleviated inflammation induced by shNur77. Consistent with the in vivo studies, we found that compared with control group, older adults with high serum hsCRP levels were more likely to suffer from osteoporosis (OR = 1.76, p < 0.001). Our data suggest that Nur77 suppresses osteoclast differentiation by inhibiting the NF‐κB signalling pathway, strongly supporting the notion that Nur77 has the potential to prevent and treat osteoporosis.  相似文献   

3.
Osteoarthritis has become one of the main diseases affecting the life of many elderly people with high incidence of disability, and local chronic inflammation in the joint cavity is the most crucial pathological feature of osteoarthritis. Astilbin is the main active component in a variety of natural plants such as Hypericum perforatum and Sarcandra glabra, which possess antioxidant and anti‐inflammatory effects. At present, there is no study about the protective effect of Astilbin for osteoarthritis. The purpose of this study was to investigate the effect of Astilbin in human OA chondrocytes and mouse OA model, which was established by surgery‐mediated destabilization of the medial meniscus (DMM). In vitro, we found that Astilbin pre‐treatment inhibited lipopolysaccharide (LPS)‐induced overproduction of inflammation‐correlated cytokines such as nitric oxide (NO), prostaglandin E2 (PGE2), tumour necrosis factor α (TNF‐α) and interleukin 6 (IL‐6), and suppressed overexpression of inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX‐2). Astilbin, on the other hand, prevented the LPS‐induced degradation of extracellular matrix (ECM) by down‐regulating MMP13 (matrix metalloproteinases 13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5). Moreover, by inhibiting the formation of the TLR4/MD‐2/LPS complex, Astilbin blocked LPS‐induced activation of TLR4/NF‐κB signalling cascade. In vivo, Astilbin showed the chondro‐protective effect in the surgical‐induced OA mouse models. In conclusion, our findings provided evidence that develops Astilbin as a potential therapeutic drug for OA patients.  相似文献   

4.
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti‐inflammatory drugs prompt the identification of new therapeutic strategies. Plant‐derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight mass spectrometry (RP‐HPLC–ESI‐Q‐TOF‐MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre‐treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre‐treatment with LEVs decreased gene and protein expression of pro‐inflammatory cytokines, such as IL‐6, IL1‐β and TNF‐α, and reduced the nuclear translocation and phosphorylation of NF‐κB in LPS‐stimulated murine macrophages. The inhibition of NF‐κB activation was associated with the reduction in ERK1‐2 phosphorylation. Furthermore, the ability of LEVs to decrease pro‐inflammatory cytokines and increase anti‐inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti‐inflammatory effects both in vitro and ex vivo by inhibiting the ERK1‐2/NF‐κB signalling pathway.  相似文献   

5.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   

6.
ObjectivesThe study aimed to determine whether dental pulp stem cell‐derived exosomes (DPSC‐Exos) exert protective effects against cerebral ischaemia‐reperfusion (I/R) injury and explore its underlying mechanism.Materials and MethodsExosomes were isolated from the culture medium of human DPSC. Adult male C57BL/6 mice were subjected to 2 hours transient middle cerebral artery occlusion (tMCAO) injury followed by 2 hours reperfusion, after which singular injection of DPSC‐Exos via tail vein was administrated. Brain oedema, cerebral infarction and neurological impairment were measured on day 7 after exosomes injection. Then, oxygen‐glucose deprivation–reperfusion (OGD/R) induced BV2 cells were studied to analyse the therapeutic effects of DPSC‐Exos on I/R injury in vitro. Protein levels of TLR4, MyD88, NF‐κB p65, HMGB1, IL‐6, IL‐1β and TNF‐α were determined by western blot or enzyme‐linked immunosorbent assay. The cytoplasmic translocation of HMGB1 was detected by immunofluorescence staining.ResultsDPSC‐Exos alleviated brain oedema, cerebral infarction and neurological impairment in I/R mice. DPSC‐Exos inhibited the I/R‐mediated expression of TLR4, MyD88 and NF‐κB significantly. DPSC‐Exos also reduced the protein expression of IL‐6, IL‐1β and TNF‐α compared with those of the control both in vitro and in vivo. Meanwhile, DPSC‐Exos markedly decreased the HMGB1 cytoplasmic translocation induced by I/R damage.ConclusionsDPSC‐Exos can ameliorate I/R‐induced cerebral injury in mice. Its anti‐inflammatory mechanism might be related with the inhibition of the HMGB1/TLR4/MyD88/NF‐κB pathway.  相似文献   

7.
Abnormal lipid metabolism, such as systemic increased free fatty acid, results in overproduction of pro‐inflammatory enzymes and cytokines, which is crucial in the development of obesity‐related osteoarthritis (OA). However, there are only a few drugs that target the lipotoxicity of OA. Recent researches have documented that the traditional Chinese medicine, Sparstolonin B (Ssn B), exerted anti‐inflammatory effects in various diseases, but not yet in OA. On the basis of this evidence, our works purposed to evaluate the effect of Ssn B on free fatty acid (FFA) palmitate (PA)‐stimulated human osteoarthritic chondrocytes and obesity‐associated mouse OA model. We found that Ssn B suppressed PA‐triggered inflammatory response and extracellular matrix catabolism in a concentration‐dependent approach. In vivo, Ssn B treatment inhibited cartilage degeneration and subchondral bone calcification caused by joint mechanical imbalance and alleviated metabolic inflammation in obesity. Mechanistically, co‐immunoprecipitine and molecular docking analysis showed that the formation of toll­like receptor 4 (TLR4)/myeloid differentiation protein‐2 (MD‐2) complex caused by PA was blocked by Ssn B. Subsequently, it leads to inactivation of PA‐caused myeloid differentiation factor 88 (MyD88)‐dependent nuclear factor‐kappaB (NF‐κB) cascade. Together, these findings demonstrated that Ssn B is a potential treatment agent for joint degenerative diseases in obese individuals.  相似文献   

8.
To investigate the role of glycyrrhizin on the progression of temporomandibular joint osteoarthritis (TMJOA) and the underlying mechanism by regulation of the high‐mobility group box 1 (HMGB1) receptor for advanced glycation end products (RAGE)/toll‐like receptor 4 (TLR4)‐nuclear factor kappa B (NF‐κB)/protein kinase B (AKT) pathway. After a rat model of TMJOA was built by intra‐articular injection of monosodium iodoacetate, glycyrrhizin was intragastrically administered at low concentration (20 mg/kg) or high concentration (50 mg/kg). Micro‐computed tomography, histological and immunohistochemical analysis were used to reveal the progression of TMJOA. Rat TMJ chondrocytes and disc cells were cultured in inflammatory condition with different doses of glycyrrhizin. Western blot was used to evaluate the effect of glycyrrhizin on the HMGB1‐RAGE/TLR4‐NF‐κB/AKT pathway. Administration of glycyrrhizin alleviated cartilage degeneration, lowered the levels of inflammatory and catabolic mediators and reduced the production of HMGB1, RAGE and TLR4 in TMJOA animal model. Increased production of RAGE and TLR4, and activated intracellular NF‐κB and/or AKT signalling pathways in chondrocytes and disc cells were found in inflammatory condition. Upon activation, matrix metalloprotease‐3 and interleukin‐6 were upregulated. Glycyrrhizin inhibited not only HMGB1 release but also RAGE and TLR4 in inflammatory condition. Glycyrrhizin alleviated the pathological changes of TMJOA by regulating the HMGB1‐RAGE/TLR4‐NF‐kB/AKT signalling pathway. This study revealed the potential of glycyrrhizin as a novel therapeutic drug to suppress TMJ cartilage degradation.  相似文献   

9.
Osteoarthritis (OA), which is characterized by proliferation of subchondral bone and the degeneration of articular cartilage, is the most prevalent human arthritis. Nod‐like receptor pyrin domain 3 (NLRP3) inflammasome is a hot spot in recent year and has been reported to be associated with OA synovial inflammation. However, there are few studies on NLRP3 inflammasome in chondrocyte. Licochalcone A (Lico A), a compound extracted from Glycyrrhiza species, has various biological effects such as anti‐inflammation, anti‐apoptotic, anti‐cancer and anti‐oxidation. In this study, we investigated the protective effect of Lico A on chondrocytes stimulated by lipopolysaccharide (LPS) and surgically induced OA models. In vitro, Lico A could reduce the expression of NLRP3, apoptosis‐associated speck‐like protein (ASC), Gasdermin D (GSDMD), caspase‐1, interleukin‐1beta (IL‐1β) and IL‐18, which indicated that Lico A attenuates LPS‐induced chondrocytes pyroptosis. In addition, Lico A ameliorates the degradation of extracellular matrix (ECM) by enhancing the expression of aggrecan and collagen‐II. Meanwhile, we found that Lico A inhibits NLRP3 inflammasome via nuclear factor erythroid‐2‐related factor 2 (Nrf2)/haeme oxygenase‐1(HO‐1)/nuclear factor kappa‐B (NF‐κB) axis. And the Nrf2 small interfering RNA (siRNA) could reverse the anti‐pyroptosis effects of Lico A in mouse OA chondrocytes. In vivo, Lico A mitigates progression OA in a mouse model and reduces OA Research Society International (OARSI) scores. Thus, Lico A may have therapeutic potential in OA.  相似文献   

10.
Small molecule drug intervention for chondrocytes is a valuable method for the treatment of osteoarthritis (OA). The 4‐octyl itaconate (OI) is a cellular derivative of itaconate with sound cell permeability and transformation rate. We attempted to confirm the protective role of OI in chondrocytes and its regulatory mechanism. We used lipopolysaccharide (LPS) to induce chondrocyte inflammation injury. After the OI treatment, the secretion and mRNA expression of Il6, Il10, Mcp1 and Tnfα were detected by ELISA and qPCR. The protective effect of OI on articular cartilage was further verified in surgical destabilization of the medial meniscus model of OA. Cell death and apoptosis were evaluated based on CCK8, LDH, Typan blue staining, Annexin V and TUNEL analyses. The small interfering RNAs were used to knockout the Nrf2 gene of chondrocytes to verify the OI‐mediated Nrf2 signalling pathway. The results revealed that OI protects cells from LPS‐induced inflammatory injury and attenuates cell death and apoptosis induced by LPS. Similar protective effects were also observed on articular cartilage in mice. The OI activated Nrf2 signalling pathway and promoted the stable expression and translocation of Nrf2 into the nucleus. When the Nrf2 signalling pathway was blocked, the protective effect of OI was significantly counteracted in chondrocytes and a mouse arthritis model. Both itaconate and its derivative (i.e., OI) showed important medical effects in the treatment of OA.  相似文献   

11.
12.
Balancing cell death is essential to maintain healthy tissue homeostasis and prevent disease. Tumor necrosis factor (TNF) not only activates nuclear factor κB (NFκB), which coordinates the cellular response to inflammation, but may also trigger necroptosis, a pro‐inflammatory form of cell death. Whether TNF‐induced NFκB affects the fate decision to undergo TNF‐induced necroptosis is unclear. Live‐cell microscopy and model‐aided analysis of death kinetics identified a molecular circuit that interprets TNF‐induced NFκB/RelA dynamics to control necroptosis decisions. Inducible expression of TNFAIP3/A20 forms an incoherent feedforward loop to interfere with the RIPK3‐containing necrosome complex and protect a fraction of cells from transient, but not long‐term TNF exposure. Furthermore, dysregulated NFκB dynamics often associated with disease diminish TNF‐induced necroptosis. Our results suggest that TNF''s dual roles in either coordinating cellular responses to inflammation, or further amplifying inflammation are determined by a dynamic NFκB‐A20‐RIPK3 circuit, that could be targeted to treat inflammation and cancer.  相似文献   

13.
14.
JAK/STAT and NFκB signalling pathways play essential roles in regulating inflammatory responses, which are important pathogenic factors of various serious immune‐related diseases, and function individually or synergistically. To find prodrugs that can treat inflammation, we performed a preliminary high‐throughput screening of 18 840 small molecular compounds and identified scaffold compound L971 which significantly inhibited JAK/STAT and NFκB driven luciferase activities. L971 could inhibit the constitutive and stimuli‐dependent activation of STAT1, STAT3 and IκBα and could significantly down‐regulate the proinflammatory gene expression in mouse peritoneal macrophages stimulated by LPS. Gene expression profiles upon L971 treatment were determined using high‐throughput RNA sequencing, and significant differentially up‐regulated and down‐regulated genes were identified by DESeq analysis. The bioinformatic studies confirmed the anti‐inflammatory effects of L971. Finally, L971 anti‐inflammatory character was further verified in LPS‐induced sepsis shock mouse model in vivo. Taken together, these data indicated that L971 could down‐regulate both JAK/STAT and NFκB signalling activities and has the potential to treat inflammatory diseases such as sepsis shock.  相似文献   

15.
Compelling evidence showed that both nucleotide‐binding oligomerization domain‐like receptor family, pyrin domain‐containing protein 3 (NLRP3) inflammasomes and the immunoproteasome participate in neuroinflammatory responses in cerebral ischaemia injury. Moreover, inhibition of either NLRP3 inflammasomes or the immunoproteasome attenuates both neuroinflammation and neurological deterioration during ischaemic stroke. However, the underlying mechanism between the immunoproteasome and NLRP3 inflammasomes under ischaemic stroke conditions remains to be established. In this study, using both in vitro and in vivo ischaemic models, we demonstrated that the immunoproteasome inhibition reduced the expressions of NLRP3 inflammasome‐associated proteins, including NLRP3, apoptosis‐associated speck‐like protein (ASC), caspase‐1 and mature cytokines (interleukin [IL]‐1β and IL‐18). It also downregulated the levels of nuclear factor (NF)‐κB and pyroptotic‐ and apoptotic‐related proteins, and improved cell viability. In addition, inhibition of NF‐κB by the small molecule inhibitor Bay‐11‐7082 led to lower levels of NLRP3 inflammasomes and cleaved caspase‐1 proteins in BV2 cells after oxygen‐glucose deprivation and reoxygenation. Together, these findings suggest that the immunoproteasome may be responsible for inducing the expression and activation of NLRP3 inflammasomes via the NF‐κB pathway. Therapeutic interventions that target activation of the immunoproteasome/NF‐κB/NLRP3 inflammasome pathway may provide novel prospects for the future treatment of ischaemic stroke.  相似文献   

16.
Ventricular arrhythmias (VAs) triggers by sympathetic nerve hyperactivity contribute to sudden cardiac death in myocardial infarction (MI) patients. Microglia‐mediated inflammation in the paraventricular nucleus (PVN) is involved in sympathetic hyperactivity after MI. N6‐methyladenosine (m6A), the most prevalent mRNA and epigenetic modification, is critical for mediating cell inflammation. We aimed to explore whether METTL3‐mediated m6A modification is involved in microglia‐mediated sympathetic hyperactivity after MI in the PVN. MI model was established by left coronary artery ligation. METTL3‐mediated m6A modification was markedly increased in the PVN at 3 days after MI, and METTL3 was primarily located in microglia by immunofluorescence. RNA‐seq, MeRIP‐seq, MeRIP‐qPCR, immunohistochemistry, ELISA, heart rate variability measurements, renal sympathetic nerve activity recording and programmed electrical stimulation confirmed that the elevated toll‐like receptor 4 (TLR4) expression by m6A modification on TLR4 mRNA 3''‐UTR region combined with activated NF‐κB signalling led to the overwhelming production of pro‐inflammatory cytokines IL‐1β and TNF‐α in the PVN, thus inducing the sympathetic hyperactivity and increasing the incidence of VAs post‐MI. Targeting METTL3 attenuated the inflammatory response and sympathetic hyperactivity and reduced the incidence of VAs post‐MI.  相似文献   

17.
Radiation‐induced oral mucositis is a common and dose‐limiting complication of head and neck radiotherapy with no effective treatment. Previous studies revealed that sildenafil, a phosphodiesterase 5 inhibitor, has anti‐inflammatory and anti‐cancer effects. In this study, we investigated the effect of sildenafil on radiation‐induced mucositis in rats. Two doses of radiation (8 and 26 Gy X‐ray) were used to induce low‐grade and high‐grade oral mucositis, separately. A control group and three groups of sildenafil citrate‐treated rats (5, 10, and 40 mg/kg/day) were used for each dose of radiation. Radiation increased MDA and activated NF‐κB, ERK and JNK signalling pathways. Sildenafil significantly decreased MDA level, nitric oxide (NO) level, IL1β, IL6 and TNF‐α. The most effective dose of sildenafil was 40 mg/kg/day in this study. Sildenafil also significantly inhibited NF‐κB, ERK and JNK signalling pathways and increased bcl2/bax ratio. In addition, high‐dose radiation severely destructed the mucosal layer in histopathology and led to mucosal cell apoptosis in the TUNEL assay. Sildenafil significantly improved mucosal structure and decreased inflammatory cell infiltration after exposure to high‐dose radiation and reduced apoptosis in the TUNEL assay. These findings show that sildenafil can improve radiation‐induced oral mucositis and decrease the apoptosis of mucosal cells via attenuation of inflammation and oxidative stress.  相似文献   

18.
Cinnamon is a wildly used traditional Chinese herbal medicine for osteoarthritis (OA) treatment, but the underlying mechanism remains ambiguous. The purpose of this study is to explore the mechanism of cinnamic aldehyde (CA), a bioactive substance extracted from Cinnamon, on synovial inflammation in OA. A total of 144 CA‐OA co‐targeted genes were identified by detect databases (PubChem, HIT, TCMSP, TTD, DrugBank and GeneCards). The results of GO enrichment analysis indicated that these co‐targeted genes have participated in many biological processes including ‘inflammatory response’, ‘cellular response to lipopolysaccharide’, ‘response to drug’, ‘immune response’, ‘lipopolysaccharide‐mediated signalling pathway’, etc. KEGG pathway analysis showed these co‐targeted genes were mainly enriched in ‘Toll‐like receptor signalling pathway’, ‘TNF signalling pathway’, ‘NF‐kappa B signalling pathway’, etc. Molecular docking demonstrated that CA could successfully bind to TLR2 and TLR4. The results of in vitro experiments showed no potential toxicity of 10, 20 and 50 μM/L CA on human OA FLS, and CA can significantly inhibit the inflammation in LPS‐induced human FLS. Further experimental mechanism evidence confirmed CA can inhibited the inflammation in LPS‐induced human OA FLS via blocking the TLR4/MyD88 signalling pathway. Our results demonstrated that CA exhibited strong anti‐inflammation effect in OA FLS through blocking the activation of TLR4/MyD88 signalling pathway, suggesting its potential as a hopeful candidate for the development of novel agents for the treatment of OA.  相似文献   

19.
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia‐reperfusion (I/R) injury (MIRI), but the role of p300/CBP‐associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF‐κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF‐κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF‐κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号