首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis has been regarded as a major contributor to cardiovascular disease. The role of extracellular vesicles (EVs) in the treatment of atherosclerosis has been increasingly reported. In this study, we set out to investigate the effect of macrophages‐derived EVs (M‐EVs) containing miR‐19b‐3p in the progression of atherosclerosis, with the involvement of JAZF1. Following isolation of EVs from macrophages, the M‐EVs were induced with ox‐low density lipoprotein (LDL) (ox‐LDL‐M‐EVs), and co‐cultured with vascular smooth muscle cells (VSMCs). RT‐qPCR and western blot assay were performed to determine the expression of miR‐19b‐3p and JAZF1 in M‐EVs and in VSMCs. Lentiviral infection was used to overexpress or knock down miR‐19b‐3p. EdU staining and scratch test were conducted to examine VSMC proliferation and migration. Dual‐luciferase gene reporter assay was performed to examine the relationship between miR‐19b‐3p and JAZF1. In order to explore the role of ox‐LDL‐M‐EVs carrying miR‐19b‐3p in atherosclerotic lesions in vivo, a mouse model of atherosclerosis was established through high‐fat diet induction. M‐EVs were internalized by VSMCs. VSMC migration and proliferation were promoted by ox‐LDL‐M‐EVs. miR‐19b‐3p displayed upregulation in ox‐LDL‐M‐EVs. miR‐19b‐3p was transferred by M‐EVs into VSMCs, thereby promoting VSMC migration and proliferation. mir‐19b‐3p targeted JAZF1 to decrease its expression in VSMCs. Atherosclerosis lesions were aggravated by ox‐LDL‐M‐EVs carrying miR‐19b‐3p in ApoE−/− mice. Collectively, this study demonstrates that M‐EVs containing miR‐19b‐3p accelerate migration and promotion of VSMCs through targeting JAZF1, which promotes the development of atherosclerosis.  相似文献   

2.
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways.  相似文献   

3.
Radiation‐induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into radiation pneumonia (RP) and radiation‐induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)‐approved drug for (IPF) treatment, and its mechanism in the treatment of RILF. In vivo, C57BL/6 mice received a 50 Gy dose of X‐ray radiation to the whole thorax with or without the administration of PFD. Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor‐β1 (TGF‐β1)/Drosophila mothers against the decapentaplegic 3 (Smad3) signalling pathway. Moreover, PFD treatment decreased the radiation‐induced expression of TGF‐β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL‐4–induced M2 macrophage polarization and IL‐13–induced M2 macrophage polarization were suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase‐1 (ARG‐1), chitinase 3‐like 3 (YM‐1) and TGF‐β1. Notably, the PFD‐induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa‐B (NF‐κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation‐induced chemokine secretion in MLE‐12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF‐β1 from M2 macrophages by attenuating the activation of TGF‐β1/Smad3. In conclusion, PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF‐β1/Smad3.  相似文献   

4.
Radiation‐induced oral mucositis is a common and dose‐limiting complication of head and neck radiotherapy with no effective treatment. Previous studies revealed that sildenafil, a phosphodiesterase 5 inhibitor, has anti‐inflammatory and anti‐cancer effects. In this study, we investigated the effect of sildenafil on radiation‐induced mucositis in rats. Two doses of radiation (8 and 26 Gy X‐ray) were used to induce low‐grade and high‐grade oral mucositis, separately. A control group and three groups of sildenafil citrate‐treated rats (5, 10, and 40 mg/kg/day) were used for each dose of radiation. Radiation increased MDA and activated NF‐κB, ERK and JNK signalling pathways. Sildenafil significantly decreased MDA level, nitric oxide (NO) level, IL1β, IL6 and TNF‐α. The most effective dose of sildenafil was 40 mg/kg/day in this study. Sildenafil also significantly inhibited NF‐κB, ERK and JNK signalling pathways and increased bcl2/bax ratio. In addition, high‐dose radiation severely destructed the mucosal layer in histopathology and led to mucosal cell apoptosis in the TUNEL assay. Sildenafil significantly improved mucosal structure and decreased inflammatory cell infiltration after exposure to high‐dose radiation and reduced apoptosis in the TUNEL assay. These findings show that sildenafil can improve radiation‐induced oral mucositis and decrease the apoptosis of mucosal cells via attenuation of inflammation and oxidative stress.  相似文献   

5.
6.
Interleukin 27 (IL‐27) is a heterodimeric cytokine that elicits potent immunosuppressive responses. Comprised of EBI3 and p28 subunits, IL‐27 binds GP130 and IL‐27Rα receptor chains to activate the JAK/STAT signaling cascade. However, how these receptors recognize IL‐27 and form a complex capable of phosphorylating JAK proteins remains unclear. Here, we used cryo electron microscopy (cryoEM) and AlphaFold modeling to solve the structure of the IL‐27 receptor recognition complex. Our data show how IL‐27 serves as a bridge connecting IL‐27Rα (domains 1–2) with GP130 (domains 1–3) to initiate signaling. While both receptors contact the p28 component of the heterodimeric cytokine, EBI3 stabilizes the complex by binding a positively charged surface of IL‐27Rα and Domain 1 of GP130. We find that assembly of the IL‐27 receptor recognition complex is distinct from both IL‐12 and IL‐6 cytokine families and provides a mechanistic blueprint for tuning IL‐27 pleiotropic actions.  相似文献   

7.
Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID‐19 infection. The pathogenesis of COVID‐19‐related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS‐CoV‐2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF‐α + IFN‐γ or a cocktail of TNF‐α + IFN‐γ + IL‐6, increased expression of ACE2/DPP4, accentuated the pro‐inflammatory senescence‐associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence‐like state. IL‐6 by itself failed to induce substantial effects on viral entry receptors or SASP‐related genes, while synergy between TNF‐α and IFN‐γ initiated a positive feedback loop via hyper‐activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper‐inflammation, normalized SARS‐CoV‐2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine‐mediated viral entry receptor activation and links with senescence and hyper‐inflammation.  相似文献   

8.
9.
10.
JAK/STAT and NFκB signalling pathways play essential roles in regulating inflammatory responses, which are important pathogenic factors of various serious immune‐related diseases, and function individually or synergistically. To find prodrugs that can treat inflammation, we performed a preliminary high‐throughput screening of 18 840 small molecular compounds and identified scaffold compound L971 which significantly inhibited JAK/STAT and NFκB driven luciferase activities. L971 could inhibit the constitutive and stimuli‐dependent activation of STAT1, STAT3 and IκBα and could significantly down‐regulate the proinflammatory gene expression in mouse peritoneal macrophages stimulated by LPS. Gene expression profiles upon L971 treatment were determined using high‐throughput RNA sequencing, and significant differentially up‐regulated and down‐regulated genes were identified by DESeq analysis. The bioinformatic studies confirmed the anti‐inflammatory effects of L971. Finally, L971 anti‐inflammatory character was further verified in LPS‐induced sepsis shock mouse model in vivo. Taken together, these data indicated that L971 could down‐regulate both JAK/STAT and NFκB signalling activities and has the potential to treat inflammatory diseases such as sepsis shock.  相似文献   

11.
PD‐L1 is closely related to the immune escape process of tumour cells, and targeted PD‐L1 clinical immunotherapy has been implemented. However, whether PD‐L1 is involved in TAM/M2 polarization in the TME of NSCLC and its specific mechanism remain unclear. In order to clarify the specific role of PD‐L1 in NSCLC and to seek new treatments for NSCLC, we designed a series of experimental studies. After constructing the co‐culture system and conditioned medium system, the proliferation, apoptosis, metastasis, angiogenesis, EMT process and stemness of NSCLC were detected by MTT, flow cytometry, Transwell, endothelial cell tube formation and western blot assays. The results showed that αPD‐L1 reversed TAM/M2 polarization by suppressing STAT3 phosphorylation in TAM/M2, therapy inhibiting NSCLC cell migration, angiogenesis, EMT process and stemness. However, αPD‐L1 had no effect on the proliferation and apoptosis abilities of NSCLC cells. In vivo experiments showed that αPD‐L1 inhibited lung metastasis of NSCLC and reversed TAM/M2 polarization in TME. The study investigates the mechanism by which PD‐L1 regulates TAMs polarization in TME and promotes malignant progression of NSCLC, providing a new theoretical basis for PD‐L1 targeted therapy of NSCLC.  相似文献   

12.
While PAX5 is an important tumor suppressor gene in B‐cell acute lymphoblastic leukemia (B‐ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5‐JAK2 encodes a protein consisting of the PAX5 DNA‐binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5‐JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles. Pax5 Jak2/+ mice rapidly developed an aggressive B‐ALL in the absence of another cooperating exogenous gene mutation. The DNA‐binding function and kinase activity of Pax5‐Jak2 as well as IL‐7 signaling contributed to leukemia development. Interestingly, all Pax5 Jak2/+ tumors lost the remaining wild‐type Pax5 allele, allowing efficient DNA‐binding of Pax5‐Jak2. While we could not find evidence for a nuclear role of Pax5‐Jak2 as an epigenetic regulator, high levels of active phosphorylated STAT5 and increased expression of STAT5 target genes were seen in Pax5 Jak2/+ B‐ALL tumors, implying that nuclear Pax5‐Jak2 phosphorylates STAT5. Together, these data reveal Pax5‐Jak2 as an important nuclear driver of leukemogenesis by maintaining phosphorylated STAT5 levels in the nucleus.  相似文献   

13.
Poly(lactide‐co‐glycolide) (PLGA) shows great potentials in biomedical applications, in particular with the field of biodegradable implants and control release technologies. However, there are few systematic and detailed studies on the influence of PLGA degradation behavior on the immunogenicity. In this study, in order to develop a method for dynamically assessing the immunological response of PLGA throughout the implantation process, PLGA particles are fabricated using an o/w single‐emulsion method. The physicochemical characterizations of the prepared PLGA particles during in vitro hydrolytic degradation are investigated. Then, a series of immunological effects triggered by PLGA by‐products formed with degradation process are evaluated, including cell viability, apoptosis, polarization and inflammatory reaction. THP‐1 human cell line is set as in vitro cell model. Our results show that PLGA degradation‐induced acid environment decreases cell viability and increases cell apoptosis, which is a potential factor affecting cell function. In particular, the macrophages exhibit up‐regulations in both M1 subtype related surface markers and pro‐inflammatory cytokines with the degradation process of PLGA, which indicates the degradation products of PLGA can convert macrophages to the pro‐inflammatory (M1) polarization state. All these findings provide the mechanism of PLGA‐induced inflammation and lay the foundation for the design of next‐generation PLGA‐based biomaterials endowed with immunomodulatory functions.  相似文献   

14.
The eukaryotic replisome is rapidly disassembled during DNA replication termination. In metazoa, the cullin‐RING ubiquitin ligase CUL‐2LRR‐1 drives ubiquitylation of the CMG helicase, leading to replisome disassembly by the p97/CDC‐48 “unfoldase”. Here, we combine in vitro reconstitution with in vivo studies in Caenorhabditis elegans embryos, to show that the replisome‐associated TIMELESS‐TIPIN complex is required for CUL‐2LRR‐1 recruitment and efficient CMG helicase ubiquitylation. Aided by TIMELESS‐TIPIN, CUL‐2LRR‐1 directs a suite of ubiquitylation enzymes to ubiquitylate the MCM‐7 subunit of CMG. Subsequently, the UBXN‐3 adaptor protein directly stimulates the disassembly of ubiquitylated CMG by CDC‐48_UFD‐1_NPL‐4. We show that UBXN‐3 is important in vivo for replisome disassembly in the absence of TIMELESS‐TIPIN. Correspondingly, co‐depletion of UBXN‐3 and TIMELESS causes profound synthetic lethality. Since the human orthologue of UBXN‐3, FAF1, is a candidate tumour suppressor, these findings suggest that manipulation of CMG disassembly might be applicable to future strategies for treating human cancer.  相似文献   

15.
Hypoxia/reoxygenation (H/R)‐induced myocardial cell injury is the main cause of acute myocardial infarction (AMI). Many proofs show that circular RNA plays an important role in the development of AMI. The purpose of this study was to investigate the role of circSAMD4A in H/R‐induced myocardial injury. The levels of circular SAMD4A (circSAMD4A) were detected in the heart tissues of AMI mice and H/R‐induced H9C2 cells, and the circSAMD4A was suppressed in AMI mice and H/R‐induced H9C2 cells to investigate its’ function in AMI. The levels of circSAMD4A and miR‐138‐5p were detected by real‐time quantitative PCR, and MTT assay was used to detect cell viability. TUNEL analysis and Annexin V‐FITC were used to determine apoptosis. The expression of Bcl‐2 and Bax proteins was detected by Western blot. IL‐1β, TNF‐α and IL‐6 were detected by ELISA kits. The study found that the levels of circSAMD4A were up‐regulated after H/R induction and inhibition of circSAMD4A expression would reduce the H/R‐induced apoptosis and inflammation. MiR‐138‐5p was down‐regulated in H/R‐induced H9C2 cells. circSAMD4A was a targeted regulator of miR‐138‐5p. CircSAMD4A inhibited the expression of miR‐138‐5p to promote H/R‐induced myocardial cell injury in vitro and vivo. In conclusion, CircSAMD4A can sponge miR‐138‐5p to promote H/R‐induced apoptosis and inflammatory response.  相似文献   

16.
Renal ischaemia‐reperfusion (RI/R) injury is one major pathological state of acute kidney injury (AKI) with a mortality rate ranking 50% to 80%. MiR‐144‐5p acts as a molecular trigger in various diseases. We presumed that miR‐144‐5p might be involved RI/R injury progression. We found that RI/R injury decreased miR‐144‐5p expression in rat models. MiR‐144‐5p downregulation promoted cell apoptosis rate and activated Wnt/β‐catenin signal in RI/R injury rats. By performing bioinformatic analysis, RIP, RNA pull‐down, luciferase reporter experiments, we found that circ‐AKT3 sponged to miR‐144‐5p and decreased its expression in RI/R injury rats. Moreover, we found that circ‐AKT3 promoted cell apoptosis rate and activated Wnt/β‐catenin signal, and miR‐144‐5p mimic reversed the promotive effect of circ‐AKT3 in rat models. We also found that circ‐AKT3 increased the oxidative stress level in rat models. In conclusion, our study suggests that the circAKT3 is involved RI/R injury progression through regulating miR‐144‐5p/Wnt/β‐catenin pathway and oxidative stress.  相似文献   

17.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   

18.
Cross‐linking mass spectrometry has developed into an important method to study protein structures and interactions. The in‐solution cross‐linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross‐links obtained from co‐occurring protein oligomers, complexes, or conformers. Here we developed a cross‐linking workflow combining blue native PAGE with in‐gel cross‐linking mass spectrometry (IGX‐MS). This workflow circumvents steps, such as buffer exchange and cross‐linker concentration optimization. Additionally, IGX‐MS enables the parallel analysis of co‐occurring protein complexes using only small amounts of sample. Another benefit of IGX‐MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over‐length cross‐links compared to in‐solution cross‐linking. We next used IGX‐MS to investigate the complement components C5, C6, and their hetero‐dimeric C5b6 complex. The obtained cross‐links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX‐MS can provide new insights into the initial stages of the terminal complement pathway.  相似文献   

19.
20.
The growth of endometrial stromal cells (ESCs) at implantation sites may be a potential factor affecting the success rate of embryo implantation. Incremental proofs demonstrated that ncRNAs (e.g. miRNAs, lncRNAs and circRNAs) were involved in various biological procedures, including proliferation and apoptosis. In this study, the role of miR‐100‐5p on proliferation and apoptosis of goat ESCs in vitro and embryo implantation in vivo was determined. The mRNA expression of miR‐100‐5p was significantly inhibited in the receptive phase (RE) rather than in the pre‐receptive phase (PE). Overexpression of miR‐100‐5p suppressed ESCs proliferation and induced apoptosis. The molecular target of MiR‐100‐5p, HOXA1, was confirmed by 3′‐UTR assays. Meanwhile, the product of HOXA1 mRNA RT‐PCR increased in the RE more than that in the PE. The HOXA1‐siRNA exerted significant negative effects on growth arrest. Instead, incubation of ESCs with miR‐100‐5p inhibitor or overexpressed HOXA1 promoted the cell proliferation. In addition, Circ‐9110 which acted as a sponge for miR‐100‐5p reversed the relevant biological effects of miR‐100‐5p. The intrinsic apoptosis pathway was suppressed in ESCs, revealing a crosstalk between Circ‐9110/miR‐100‐5p/HOXA1 axis, PI3K/AKT/mTOR, and ERK1/2 pathways. To further evaluate the progress in study on embryo implantation regulating mechanism of miR‐100‐5p in vivo, the pinopodes of two phases were observed and analysed, suggesting that, as similar as in situ, miR‐100‐5p was involved in significantly regulating embryo implantation in vivo. Mechanistically, miR‐100‐5p performed its embryo implantation function through regulation of PI3K/AKT/mTOR and ERK1/2 pathways by targeting Circ‐9110/miR‐100‐5p/HOXA1 axis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号