首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular membranes differ in protein and lipid composition as well as in the protein–lipid ratio. Thus, progression of membranous organelles along traffic routes requires mechanisms to control bilayer lipid chemistry and their abundance relative to proteins. The recent structural and functional characterization of VPS13-family proteins has suggested a mechanism through which lipids can be transferred in bulk from one membrane to another at membrane contact sites, and thus independently of vesicular traffic. Here, we show that SHIP164 (UHRF1BP1L) shares structural and lipid transfer properties with these proteins and is localized on a subpopulation of vesicle clusters in the early endocytic pathway whose membrane cargo includes the cation-independent mannose-6-phosphate receptor (MPR). Loss of SHIP164 disrupts retrograde traffic of these organelles to the Golgi complex. Our findings raise the possibility that bulk transfer of lipids to endocytic membranes may play a role in their traffic.  相似文献   

2.
Mitochondria, which are excluded from the secretory pathway, depend on lipid transport proteins for their lipid supply from the ER, where most lipids are synthesized. In yeast, the outer mitochondrial membrane GTPase Gem1 is an accessory factor of ERMES, an ER–mitochondria tethering complex that contains lipid transport domains and that functions, partially redundantly with Vps13, in lipid transfer between the two organelles. In metazoa, where VPS13, but not ERMES, is present, the Gem1 orthologue Miro was linked to mitochondrial dynamics but not to lipid transport. Here we show that Miro, including its peroxisome-enriched splice variant, recruits the lipid transport protein VPS13D, which in turn binds the ER in a VAP-dependent way and thus could provide a lipid conduit between the ER and mitochondria. These findings reveal a so far missing link between function(s) of Gem1/Miro in yeast and higher eukaryotes, where Miro is a Parkin substrate, with potential implications for Parkinson’s disease pathogenesis.  相似文献   

3.
The Sec1p family of proteins is required for vesicle-mediated protein trafficking between various organelles of the endomembrane system. This family includes Vps45p, which is required for transport to the vacuole in yeast (Saccharomyces cerevisiae). We have isolated a cDNA encoding a VPS45 homolog from Arabidopsis thaliana (AtVPS45). The cDNA is able to complement both the temperature-sensitive growth defect and the vacuolar-targeting defect of a yeast vps45 mutant, indicating that the two proteins are functionally related. AtVPS45p is a peripheral membrane protein that associates with microsomal membranes. Sucrose-density gradient fractionation demonstrated that AtVPS45p co-fractionates with AtELP, a potential vacuolar protein sorting receptor, implying that they may reside on the same membrane populations. These results indicate that AtVPS45p is likely to function in the transport of proteins to the vacuole in plants.  相似文献   

4.
Membrane contact sites, where two organelles are in close proximity, are critical regulators of cellular membrane homeostasis, with roles in signaling, lipid metabolism, and ion dynamics. A growing catalog of specialized lipid transfer proteins carry out lipid exchange at these sites. Currently characterized eukaryotic lipid transport proteins are shuttles that typically extract a single lipid from the membrane of the donor organelle, solubilize it during transport through the cytosol, and deposit it in the acceptor organelle membrane. Here, we highlight the recently identified chorein_N family of lipid transporters, including the Vps13 proteins and the autophagy protein Atg2. These are elongated proteins that, distinct from previously characterized transport proteins, bind tens of lipids at once. They feature an extended channel, most likely lined with hydrophobic residues. We discuss the possibility that they are not shuttles but instead are bridges between membranes, with lipids traversing the cytosol via the hydrophobic channel.  相似文献   

5.
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.  相似文献   

6.
In eukaryotic cells, regulated vesicular trafficking is critical for directing protein transport and for recycling and degradation of membrane lipids and proteins. Through carefully regulated transport vesicles, the endomembrane system performs a large and important array of dynamic cellular functions while maintaining the integrity of the cellular membrane system. Genetic studies in yeast Saccharomyces cerevisiae have identified approximately 50 vacuolar protein sorting (VPS) genes involved in vesicle trafficking, and most of these genes are also characterized in mammals. The VPS proteins form distinct functional complexes, which include complexes known as ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III. Little is known about the orthologs of VPS proteins in insects. Here, with the newly annotated Manduca sexta genome, we carried out genomic comparative analysis of VPS proteins in yeast, humans, and 13 sequenced insect genomes representing the Orders Hymenoptera, Diptera, Hemiptera, Phthiraptera, Lepidoptera, and Coleoptera. Amino acid sequence alignments and domain/motif structure analyses reveal that most of the components of ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III are evolutionarily conserved across yeast, insects, and humans. However, in contrast to the VPS gene expansions observed in the human genome, only four VPS genes (VPS13, VPS16, VPS33, and VPS37) were expanded in the six insect Orders. Additionally, VPS2 was expanded only in species from Phthiraptera, Lepidoptera, and Coleoptera. These studies provide a baseline for understanding the evolution of vesicular trafficking across yeast, insect, and human genomes, and also provide a basis for further addressing specific functional roles of VPS proteins in insects.  相似文献   

7.
Organelle biogenesis and intracellular lipid transport in eukaryotes.   总被引:8,自引:1,他引:7  
The inter- and intramembrane transport of phospholipids, sphingolipids, and sterols involves the most fundamental processes of membrane biogenesis. Identification of the mechanisms involved in these lipid transport reactions has lagged significantly behind that for intermembrane protein traffic until recently. Application of methods that include fluorescently labeled and spin-labeled lipid analogs, new cellular fractionation techniques, topographically specific chemical modification techniques, the identification of organelle-specific metabolism, permeabilized cell methodology, and yeast molecular genetics has contributed to revealing a diverse biochemical array of transport processes for lipids. Compelling evidence now exists for ATP-dependent, ATP-independent, vesicle-dependent, and vesicle-independent transport processes that are lipid and membrane specific. ATP-dependent transport processes include the transbilayer movement of phosphatidylserine and phosphatidylethanolamine at the plasma membrane and the transport of phosphatidylserine from its site of synthesis to the mitochondria. ATP-independent processes include the transbilayer movement of virtually all lipids at the endoplasmic reticulum, the movement of phosphatidylserine between the inner and outer mitochondrial membranes, and the transfer of nascent phosphatidylcholine and phosphatidylethanolamine to the plasma membrane. The ATP-independent movement of lipids between organelles is believed to be due to the action of lipid transfer proteins, but this still remains to be proved. Vesicle-based transport mechanisms (which are also inherently ATP dependent) include the transport of nascent cholesterol, sphingomyelin, and glycosphingolipids from the Golgi apparatus to the plasma membrane and the recycling of sphingolipids and selected pools of phosphatidylcholine from the plasma membrane to the cell interior. The vesicles involved in cholesterol transport to the plasma membrane are different from those involved in bulk protein transport to the cell surface. The vesicles involved in recycling sphingomyelin to and from the cell surface are different from those involved in the assembly of newly synthesized sphingolipids into the plasma membrane. The preliminary characterization of these lipid translocation processes suggests divergent rather than unifying mechanisms for lipid transport in organelle assembly.  相似文献   

8.
Lipid metabolism and regulation of membrane trafficking   总被引:7,自引:0,他引:7  
The past 20 years have witnessed tremendous progress in our understanding of the molecular machinery that controls protein and membrane transport between organelles (Scheckman R, Orci L. Coat proteins and vesicle budding. Science 1996;271: 1526–1533 and Rothman JE. Mechanisms of intracellular protein transport. Nature 1994;372: 55–63.) The research efforts responsible for these impressive advances have largely focused on the identification and characterization of protein factors that participate in membrane trafficking events. The role of membranes and their lipid constituents has received considerably less attention. Indeed, until rather recently, popular models for mechanisms of membrane trafficking had relegated membrane lipids to the status of a passive platform, subject to deformation by the action of coat proteins whose polymerization and depolymerization govern vesicle budding and fusion reactions. The 1990s, and particularly its last half, has brought fundamental reappraisals of the interface of lipids and lipid metabolism in regulating intracellular membrane trafficking events. Some of the emerging themes are reviewed here.  相似文献   

9.
Arp2 links autophagic machinery with the actin cytoskeleton   总被引:1,自引:0,他引:1  
Macroautophagy involves lysosomal/vacuolar elimination of long-lived proteins and entire organelles from the cytosol. The process begins with formation of a double-membrane vesicle that sequesters bulk cytoplasm, or a specific cargo destined for lysosomal/vacuolar delivery. The completed vesicle fuses with the lysosome/vacuole limiting membrane, releasing its content into the organelle lumen for subsequent degradation and recycling of the resulting macromolecules. A majority of the autophagy-related (Atg) proteins are required at the step of vesicle formation. The integral membrane protein Atg9 cycles between certain intracellular compartments and the vesicle nucleation site, presumably to supply membranes necessary for macroautophagic vesicle formation. In this study we have tracked the movement of Atg9 over time in living cells by using real-time fluorescence microscopy. Our results reveal that an actin-related protein, Arp2, briefly colocalizes with Atg9 and directly regulates the dynamics of Atg9 movement. We propose that proteins of the Arp2/3 complex regulate Atg9 transport for specific types of autophagy.  相似文献   

10.
Glycerolipid transfer for the building of membranes in plant cells   总被引:5,自引:0,他引:5  
Membranes of plant organelles have specific glycerolipid compositions. Selective distribution of lipids at the levels of subcellular organelles, membrane leaflets and membrane domains reflects a complex and finely tuned lipid homeostasis. Glycerolipid neosynthesis occurs mainly in plastid envelope and endoplasmic reticulum membranes. Since most lipids are not only present in the membranes where they are synthesized, one cannot explain membrane specific lipid distribution by metabolic processes confined in each membrane compartment. In this review, we present our current understanding of glycerolipid trafficking in plant cells. We examine the potential mechanisms involved in lipid transport inside bilayers and from one membrane to another. We survey lipid transfers going through vesicular membrane flow and those dependent on lipid transfer proteins at membrane contact sites. By introducing recently described membrane lipid reorganization during phosphate deprivation and recent developments issued from mutant analyses, we detail the specific lipid transfers towards or outwards the chloroplast envelope.  相似文献   

11.
The yeast protein Ccz1p is necessary for vacuolar protein trafficking and biogenesis. In a complex with Mon1p, it mediates fusion of transport intermediates with the vacuole membrane by activating the small GTPase Ypt7p. Additionally, genetic data suggest a role of Ccz1p in earlier transport steps, in the Golgi. In a search for further proteins interacting with Ccz1p, we identified the endosomal soluble N -ethylmaleimide-sensitive factor attachment protein receptor Pep12p as an interaction partner of Ccz1p. Combining the ccz1 Δ mutation with deletions of PEP12 or other genes encoding components of the endosomal fusion machinery, VPS21, VPS9 or VPS45 , results in synthetic growth phenotypes. The genes MON1 and YPT7 also interact genetically with PEP12 . These results suggest that the Ccz1p–Mon1p–Ypt7p complex is involved in fusion of transport vesicles to multiple target membranes in yeast cells.  相似文献   

12.
Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication.

Authors Summary

Cellular proteins and cellular membranes are usurped by positive-stranded RNA viruses to assemble viral replicase complexes required for their replication. Tombusviruses, which are small RNA viruses of plants, depend on sterol-rich membranes for replication. The authors show that the tombusviral replication protein binds to cellular oxysterol-binding ORP proteins. Moreover, the endoplasmic reticulum resident cellular VAP proteins also co-localize with viral replication proteins. These protein interactions likely facilitate the formation of membrane contact sites that are visible in cells replicating tombusvirus RNA. The authors also show that sterols are recruited and enriched to the sites of viral replication. In vitro replication assay was used to show that sterols indeed stimulate tombusvirus replication. In summary, tombusviruses use subverted cellular proteins to build sterol-rich membrane microdomain to promote the assembly of the viral replicase complex. The paper connects efficient virus replication with cellular lipid transport and membrane structures.  相似文献   

13.
Book reviews     
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

14.
Eukaryotic cells contain hundreds of different lipid species that are not uniformly distributed among their membranes. For example, sphingolipids and sterols form gradients along the secretory pathway with the highest levels in the plasma membrane and the lowest in the endoplasmic reticulum. Moreover, lipids in late secretory organelles display asymmetric transbilayer arrangements with the aminophospholipids concentrated in the cytoplasmic leaflet. This lipid heterogeneity can be viewed as a manifestation of the fact that cells exploit the structural diversity of lipids in organizing intracellular membrane transport. Lipid immiscibility and the generation of phase-separated lipid domains provide a molecular basis for sorting membrane proteins into specific vesicular pathways. At the same time, energy-driven aminophospholipid transporters participate in membrane deformation during vesicle biogenesis. This review will focus on how selective membrane transport relies on a dynamic interplay between membrane lipids and proteins.  相似文献   

15.
Phospholipid transport between membranes is a fundamental aspect of organelle biogenesis in eukaryotes; however, little is know about this process. A significant body of data demonstrates that newly synthesized phospholipids can move between membranes by routes that are independent of the vesicular traffic that carries membrane proteins. Evidence continues to accumulate in support of a system for phospholipid transport that occurs at zones of apposition and contact between donor membranes - the source of specific phospholipids - and acceptor membranes that are unable to synthesize the necessary lipids. Recent findings identify some of the lipids and proteins that must be present on membranes for inter-organelle phospholipid transport to occur between the endoplasmic reticulum and mitochondria or Golgi. These data suggest that protein and lipid assemblies on donors and acceptors promote membrane docking and facilitate lipid movement.  相似文献   

16.
The ERD2 gene, which encodes the yeast HDEL (His-Asp-Glu-Leu) receptor, is essential for growth (Semenza, J. C., K. G. Hardwick, N. Dean, and H. R. B. Pelham. 1990. Cell. 61:1349-1357; Lewis, M. J., D. J. Sweet, and H. R. B. Pelham. 1990. Cell. 61:1359-1363). SED5, when present in multiple copies, enables cells to grow in the absence of Erd2p. Sequence analysis of SED5 reveals no significant homology with ERD2 or other known genes. We have raised antibodies to Sed5p which specifically recognize a 39-kD integral membrane protein. A stretch of hydrophobic residues at the COOH terminus is predicted to hold Sed5p on the cytoplasmic face of intracellular membranes. Cells that are depleted of Sed5p are unable to transport carboxypeptidase Y to the Golgi complex, and stop growing after a dramatic accumulation of ER membranes and vesicles. We conclude that the SED5 gene is essential for growth and that Sed5p is required for ER to Golgi transport. When Sed5p is overexpressed the efficiency of ER to Golgi transport is reduced, vesicles accumulate, and cellular morphology is perturbed. Immunofluorescence studies reveal that the bulk of Sed5p is not found on ER membranes but on punctate structures throughout the cytoplasm, the number of which increases upon SED5 overexpression. We suggest that Sed5p has an essential role in vesicular transport between ER and Golgi compartments and that it may itself cycle between these organelles.  相似文献   

17.
A series of 16 synthetic scramblase candidates were prepared from a tris(aminoethyl)amine (TREN) scaffold and evaluated for ability to facilitate translocation of fluorescent phospholipid probes across vesicle membranes and endogenous phosphatidylserine across the plasma membrane of nucleated cells. More than half of the compounds were found to greatly accelerate phospholipid translocation in vesicles. However, they were generally unable to induce large increases in the amount of phosphatidylserine on the surface of nucleated mammalian cells, which contrasts with previous results using erythrocytes. Fluorescence microscopy showed that the synthetic scramblases are rapidly trafficked out of the cell plasma membrane and into the membranes of internal organelles. Future molecular designs of synthetic scramblases should focus on structures that are more amphiphilic, a structural feature that is expected to increase plasma membrane residence time.  相似文献   

18.
The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport.  相似文献   

19.
Rab GTPases are crucial regulators of organelle biogenesis, maintenance, and transport. Multiple Rabs are expressed in all cells, and each is localized to a distinct set of organelles, but little is known regarding the mechanisms by which Rabs are targeted to their resident organelles. Integral membrane proteins have been postulated to serve as receptors that recruit Rabs from the cytosol in a complex with the Rab chaperone, GDI, to facilitate the dissociation of Rab and GDI, hence facilitating loading of Rabs on membranes. We show here that the yeast (Saccharomyces cerevisiae) Golgi Rab GTPase Ypt1p can be copurified with the integral membrane protein Yip3p from detergent cell extracts. In addition, a member of the highly conserved reticulon protein family, Rtn1p, is also associated with Yip3p in vivo. However, Ypt1p did not copurify with Rtn1p, indicating that Yip3p is a component of at least two different protein complexes. Yip3p and Rtn1p are only partially colocalized in cells, with Yip3p localized predominantly to the Golgi and secondarily to the endoplasmic reticulum, whereas Rtn1p is localized predominantly to the endoplasmic reticulum and secondarily to the Golgi. Surprisingly, the intracellular localization of Rabs was not perturbed in yip3Delta or rtn1Delta mutants, suggesting that these proteins do not play a role in targeting Rabs to intracellular membranes. These data indicate that Yip3p may have multiple functions and that its interaction with Rabs is not critical for their recruitment to organelle membranes.  相似文献   

20.
The exit of low‐density lipoprotein derived cholesterol (LDL‐C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann–Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol‐binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N‐terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well‐established role in disassembling the ESCRT (endosomal sorting complex required for transport)‐III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL‐C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT‐III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT‐III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号