首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is a significant risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia with increased mortality and morbidity. High‐fat diet (HFD)‐induced obesity is associated with the activation of endoplasmic reticulum stress (ERS). However, the role of ERS in HFD‐induced AF remains elusive. Human atrium samples were examined for the ERS activation test. C57BL/6J mice were divided into four groups, including the control group, the HFD group, the 4‐phenylbutyric acid (4‐PBA) group, and the HFD + 4‐PBA group. At the age of 4 weeks, the HFD group and the HFD + 4‐PBA group were given HFD to construct the obesity model, while the other two groups were given a normal diet (ND). Transesophageal programmed electrical stimulation was conducted to evaluate the AF inducibility and duration. Atrial fibrosis and ERS activation were also investigated.We found that CHOP and GRP‐78 protein were significantly higher in overweight patients than the controls (both P < 0.05). AF inducibility and duration of the HFD group were significantly higher than the other groups (both P < 0.05), while there was no difference between those groups (P > 0.05). The mice of the HFD group had significantly higher collagen volume fraction (CVF%) than the other groups (P < 0.05). ERS marker protein of GRP78, p‐PERK, ATF6 and CHOP protein expression level was increased in the HFD group, which were significantly mitigated in the HFD + 4‐PBA group. In summary, HFD‐induced ERS activation facilitates atrial fibrosis and AF. The inhibition of ERS might alleviate atrial fibrosis and reduce the incidence of AF‐associated obesity.  相似文献   

2.
3.
4.
5.
6.
7.
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.  相似文献   

8.
9.
ObjectivesIntervertebral disc degeneration (IVDD) is a leading cause of low back pain. Circular RNAs (circRNAs) have been demonstrated to exert vital functions in IVDD. However, the role and mechanism of hsa_circ_0083756 in the development of IVDD remain unclear.Materials and methodsRT‐qPCR was performed to detect expressions of hsa_circ_0083756, miR‐558 and TREM1 in nucleus pulposus (NP) tissues and cells. CCK8 assay, flow cytometry, TUNEL assay, RT‐qPCR and WB were used to clarify the roles of hsa_circ_0083756 in NP cells proliferation and extracellular matrix (ECM) formation. Bioinformatics analyses, dual‐luciferase reporter gene experiment, RNA immunoprecipitation (RIP) assay and FISH assay were performed to predict and verify the targeting relationship between hsa_circ_0083756 and miR‐558, as well as that between miR‐558 and TREM1. Ultimately, the effect of hsa_circ_0083756 on IVDD was tested through anterior disc‐puncture IVDD animal model in rats.Resultshsa_circ_0083756 was upregulated in degenerative NP tissues and cells. In vitro loss‐of‐function and gain‐of‐function studies suggested that hsa_circ_0083756 knockdown promoted, whereas hsa_circ_0083756 overexpression inhibited NP cells proliferation and ECM formation. Mechanistically, hsa_circ_0083756 acted as a sponge of miR‐558 and subsequently promoted the expression of TREM1. Furthermore, in vivo study indicated that silencing of hsa_circ_0083756 could alleviate IVDD in rats.Conclusionshsa_circ_0083756 promoted IVDD via targeting the miR‐558/TREM1 axis, and hsa_circ_0083756 may serve as a potential therapeutic target for the treatment of IVDD.  相似文献   

10.
11.
Growing evidence has shown that Transmembrane Serine Protease 2 (TMPRSS2) not only contributes to the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, but is also closely associated with the incidence and progression of tumours. However, the correlation of coronavirus disease (COVID‐19) and cancers, and the prognostic value and molecular function of TMPRSS2 in various cancers have not been fully understood. In this study, the expression, genetic variations, correlated genes, immune infiltration and prognostic value of TMPRSS2 were analysed in many cancers using different bioinformatics platforms. The observed findings revealed that the expression of TMPRSS2 was considerably decreased in many tumour tissues. In the prognostic analysis, the expression of TMPRSS2 was considerably linked with the clinical consequences of the brain, blood, colorectal, breast, ovarian, lung and soft tissue cancer. In protein network analysis, we determined 27 proteins as protein partners of TMPRSS2, which can regulate the progression and prognosis of cancer mediated by TMPRSS2. Besides, a high level of TMPRSS2 was linked with immune cell infiltration in various cancers. Furthermore, according to the pathway analysis of differently expressed genes (DEGs) with TMPRSS2 in lung, breast, ovarian and colorectal cancer, 160 DEGs genes were found and were significantly enriched in respiratory system infection and tumour progression pathways. In conclusion, the findings of this study demonstrate that TMPRSS2 may be an effective biomarker and therapeutic target in various cancers in humans, and may also provide new directions for specific tumour patients to prevent SARS‐CoV‐2 infection during the COVID‐19 outbreak.  相似文献   

12.
Objectives Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well‐established Drosophila tumour models, we identified Toll‐7 as a novel regulator of tumour growth and invasion.Materials and methodsTransgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT‐qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0.ResultsLoss of Toll7 suppresses RasV12/lgl −/−‐induced tumour growth and invasion, as well as cell polarity disruption‐induced invasive cell migration, whereas expression of a constitutively active allele of Toll‐7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr‐JNK signalling is necessary and sufficient for Toll‐7‐induced invasive cell migration. Mechanistically, Toll‐7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll‐7 activates the EGFR‐Ras signalling, which cooperates with the Egr‐JNK signalling to promote Yki‐mediated cell proliferation and tissue overgrowth. Finally, Toll‐7 is necessary and sufficient for the proper maintenance of EGFR protein level.ConclusionsOur findings characterized Toll‐7 as a proto‐oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro‐tumour function of mammalian Toll‐like receptors (TLRs).  相似文献   

13.
Nucleotide excision repair plays a crucial role in removing many types of DNA adducts formed by UV light and chemical carcinogens. We have examined the interactions of Escherichia coli UvrABC nuclease proteins with three site-specific C8 guanine adducts formed by the carcinogens 2-aminofluorene (AF), N-acetyl-2-acetylaminofluorene (AAF) and 1-nitropyrene (1-NP) in a 50mer oligonucleotide. Similar to the AF and AAF adducts, the 1-NP-induced DNA adduct contains an aminopyrene (AP) moiety covalently linked to the C8 position of guanine. The dissociation constants for UvrA binding to AF–, AAF– and AP–DNA adducts, determined by gel mobility shift assay, are 33 ± 9, 8 ± 2 and 23 ± 9 nM, respectively, indicating that the AAF adduct is recognized much more efficiently than the other two. Incision by UvrABC nuclease showed that AAF–DNA was cleaved ~2-fold more efficiently than AF– or AP–DNA (AAF > AF ≈ AP), even though AP has the largest molecular size in this group. However, an opened DNA structure of six bases around the adduct increased the incision efficiency for AF–DNA (but not for AP–DNA), making it equivalent to that for AAF–DNA. These results are consistent with a model in which DNA damage recognition by the E.coli nucleotide excision repair system consists of two sequential steps. It includes recognition of helical distortion in duplex DNA followed by recognition of the type of nucleotide chemical modification in a single-stranded region. The difference in incision efficiency between AF– and AAF–DNA adducts in normal DNA sequence, therefore, is a consequence of their difference in inducing structural distortions in DNA. The results of this study are discussed in the light of NMR solution structures of these DNA adducts.  相似文献   

14.
The Omei wood frog (Rana omeimontis), endemic to central China, belongs to the family Ranidae. In this study, we achieved detail knowledge about the mitogenome of the species. The length of the genome is 20,120 bp, including 13 protein‐coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a noncoding control region. Similar to other amphibians, we found that only nine genes (ND6 and eight tRNA genes) are encoded on the light strand (L) and other genes on the heavy strand (H). Totally, The base composition of the mitochondrial genome included 27.29% A, 28.85% T, 28.87% C, and 15.00% G, respectively. The control regions among the Rana species were found to exhibit rich genetic variability and A + T content. R. omeimontis was clustered together with R. chaochiaoensis in phylogenetic tree. Compared to R. amurensis and R. kunyuensi, it was more closely related to R. chaochiaoensis, and a new way of gene rearrangement (ND6‐trnE‐Cytb‐D‐loop‐trnL2 (CUN)‐ND5‐D‐loop) was also found in the mitogenome of R. amurensis and R. kunyuensi. Our results about the mitochondrial genome of R. omeimontis will contribute to the future studies on phylogenetic relationship and the taxonomic status of Rana and related Ranidae species.  相似文献   

15.
MiR‐589‐5p could promote liver cancer, but the specific mechanisms are largely unknown. This study examined the role and mechanisms of miR‐589‐5p in liver cancer. The expressions of miR‐589‐5p, METTL3 and m6A in liver cancers were determined by RT‐qPCR. The relationship between miR‐589‐5p and METTL3‐mediated m6A methylation was examined by m6A RNA immunoprecipitation. After transfection, the viability, migration, invasion and expressions of METTL3 and miR‐589‐5p in liver cancer cells were detected by CCK‐8, wound‐healing, transwell and RT‐qPCR. After the xenograft tumour was established in mice, the tumour volume was determined and the expressions of METTL3, miR‐589‐5p, MMP‐2, TIMP‐2, E‐cadherin, N‐cadherin and Vimentin in tumour tissue were detected by RT‐qPCR and Western blotting. In vitro study showed that miR‐589‐5p and METTL3 were highly expressed in liver cancer. METTL3 was positively correlated with miR‐589‐5p. METTL3 up‐regulated the expression of miR‐589‐5p and promoted the maturation of miR‐589‐5p. Overexpressed miR‐589‐5p and METTL3 promoted the viability, migration and invasion of liver cancer cells, while the effects of silencing miR‐589‐5p and METTL3 on the cells were the opposite. The effects of METTL3 overexpression and silencing were reversed by miR‐589‐5p inhibitor and mimic, respectively. In vivo study showed that METLL3 silencing inhibited the growth of xenograft tumour and the expressions of METTL3, MMP‐2, N‐cadherin and Vimentin, promoted the expressions of TIMP‐2 and E‐cadherin, while miR‐589‐5p mimic caused the opposite results and further reversed the effects of METLL3 silencing. In summary, this study found that METTL3‐mediated maturation of miR‐589‐5p promoted the malignant development of liver cancer.  相似文献   

16.
The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free‐living aphids. Here, we generated a high‐quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine‐seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single‐copy orthologous genes. A total of 14,089 protein‐coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high‐quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.  相似文献   

17.
18.
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein‐coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non‐conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non‐conifers. It is more obvious that in non‐conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6‐ to 3.1‐fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2‐ to 3.6‐fold of non‐conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein‐coding genes due to gene function, plant habitat, or newly acquired IRs.  相似文献   

19.
Toothed whales are one group of marine mammals that has developed special adaptations, such as echolocation for predation, to successfully live in a dynamic aquatic environment. Their fat metabolism may differ from that of other mammals because toothed whales have acoustic fats. Gene expression in the metabolic pathways of animals can change with respect to their evolution and environment. A real‐time quantitative polymerase chain reaction (RT‐qPCR) is a reliable technique for studying the relative expressions of genes. However, since the accuracy of RT‐qPCR data is totally dependent on the reference gene, the selection of the reference gene is an essential step. In this study, 10 candidate reference genes (ZC3H10, FTL, LGALS1, RPL27, GAPDH, FTH1, DCN, TCTP, NDUS5, and UBIM) were initially tested for amplification efficiency using RT‐qPCR. After excluding DCN, the remaining nine genes, which are nearly 100% efficient, were selected for the gene stability analysis. Stable reference genes across eight different fat tissue, liver, and muscle samples from Grampus griseus were identified by four algorithms, which were provided in Genorm, NormFinder, BestKeeper, and Delta CT. Finally, a RefFinder comprehensive ranking was performed based on the stability values, and the nine genes were ranked as follows: LGALS1 > FTL > GAPDH > ZC3H10 > FTH1 > NDUS5 > TCTP > RPL27 > UBIM. The LGALS1 and FTL genes were identified as the most stable novel reference genes. The third‐ranked gene, GAPDH, is a well‐known housekeeping gene for mammals. Ultimately, we suggest the use of LGALS1 as a reliable novel reference gene for genomics studies on the lipid‐related aquatic adaptations of toothed whales.  相似文献   

20.
The aim of this study was to identify potential biomarkers of TB in blood and determine their function in Mtb‐infected macrophages. First of all, WGCNA was used to analyse 9451 genes with significant changes in TB patients’ whole blood. The 220 interferon‐γ‐related genes were identified, and then 30 key genes were screened using Cytoscape. Then, the AUC values of key genes were calculated to further narrow the gene range. Finally, we identified 9 genes from GSE19444. ROC analysis showed that SAMD9L, among 9 genes, had a high diagnostic value (AUC = 0.925) and a differential diagnostic value (AUC>0.865). To further narrow down the range of DEGs, the top 10 hub‐connecting genes were screened from monocytes (GSE19443). Finally, we obtained 4 genes (SAMD9L, GBP1, GBP5 and STAT1) by intersections of genes from monocytes and whole blood. Among them, it was found that the function of SAMD9L was unknown after data review, so this paper studied this gene. Our results showed that SAMD9L is up‐regulated and suppresses cell necrosis, and might be regulated by TLR2 and HIF‐1α during Mtb infection. In addition, miR‐181b‐5p is significantly up‐regulated in the peripheral blood plasma of tuberculosis patients, which has a high diagnostic value (AUC = 0.969).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号