首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mercurial-insensitive ectoATPase, which was more active with CaATP than with MgATP, was induced when human hepatoma (Li-7A) cells were cultured in the presence of epidermal growth factor (EGF) and cholera toxin. Cholera toxin could be replaced by forskolin, 8-Br-cAMP, butyryl-cAMP, and dibutyryl-cAMP. Requirement for EGF was specific, but EGF was ineffective if added more than 24 h after the addition of forskolin or cholera toxin. It was concluded that induction of the ectoCa2(+)-ATPase was a consequence of the synergistic actions of EGF and cyclic AMP. The tyrosine kinase activity of the EGF receptor was essential for the induction of ectoCa2(+)-ATPase, since enzyme induction was abolished by a tyrosine kinase inhibitor, genistein. Cycloheximide and actinomycin D were also inhibitory to enzyme induction, indicating that enhancement of enzyme activity by EGF and cAMP was not due to post-translational modification. The results of this and previous investigations established that the two ectoATPases of Li-7A cells are under different regulation.  相似文献   

2.
We have previously shown that liver plasma membrane (Ca2+-Mg2+)-ATPase activity is inhibited by glucagon. To investigate the possible involvement of a GTP-binding (G) protein in this regulation, we have examined the effects of pertussis toxin and cholera toxin on inhibition of (Ca2+-Mg2+)-ATPase by glucagon. Treatment of liver plasma membranes with pertussis toxin did not affect the sensitivity of (Ca2+-Mg2+)-ATPase to the hormone. In contrast, treatment of plasma membranes or prior injection of animals with cholera toxin prevented inhibition of the (Ca2+-Mg2+)-ATPase by glucagon. Even though adenylate cyclase activity was increased by cholera toxin treatment, addition of cyclic AMP did not mimic the effect of cholera toxin in blocking glucagon-mediated inhibition of (Ca2+-Mg2+)-ATPase activity. These data suggest that a cholera toxin-sensitive protein, perhaps Gs or a Gs-like protein, is involved in the regulation of liver (Ca2+-Mg2+)-ATPase activity. The results emphasize the possible role of Gs-like proteins in regulation of enzymes other than adenylate cyclase and suggest that the study of (Ca2+-Mg2+)-ATPase may provide a useful enzymatic system to examine such regulation.  相似文献   

3.
A cloned human hepatoma cell line (Li-7A), possessing epidermal growth factor (EGF) receptors numbering in the range of 10-20 pmol/10(6) cells, was inhibited in its growth by EGF as well as an antagonist monoclonal antibody (MoAb) to the EGF receptor. The mode of action of the two ligands of EGF receptors appeared to be different as indicated by the following results: 1) EGF induced marked alteration in cell morphology, whereas the antibody did not; 2) cellular protein accumulated in the EGF-treated cells but not in the antibody treated cells; and 3) ectoATPase activities were greatly enhanced in Li-7A cells treated with EGF and cholera toxin but were unaffected in cells treated with antibody and cholera toxin. The last result also suggests that expression of ectoATPase activities is under the regulation of both EGF and cholera toxin. Li-7A cells provide an additional valuable experimental system for the study of EGF action, as well as the interactive effects of EGF and cholera toxin. The enrichment of the ATPase activities in the EGF-cholera toxin-treated cells can be exploited for the detailed study and isolation of these enzymes and elucidation of their physiological functions.  相似文献   

4.
The aim of this study was to investigate (a) whether Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) participates in the regulation of plasma membrane Ca2+-ATPase and (b) its possible cross-talk with other kinase-mediated modulatory pathways of the pump. Using isolated innervated membranes of the electrocytes from Electrophorus electricus L., we found that stimulation of endogenous protein kinase A (PKA) strongly phosphorylated membrane-bound CaM kinase II with simultaneous substantial activation of the Ca2+ pump (approximately 2-fold). The addition of cAMP (5-50 pM), forskolin (10 nM), or cholera toxin (10 or 100 nM) stimulated both CaM kinase II phosphorylation and Ca2+-ATPase activity, whereas these activation processes were cancelled by an inhibitor of the PKA alpha-catalytic subunit. When CaM kinase II was blocked by its specific inhibitor KN-93, the Ca2+-ATPase activity decreased to the levels measured in the absence of calmodulin; the unusually high Ca2+ affinity dropped 2-fold; and the PKA-mediated stimulation of Ca2+-ATPase was no longer seen. Hydroxylamine-resistant phosphorylation of the Ca2+-ATPase strongly increased when the PKA pathway was activated, and this phosphorylation was suppressed by inhibition of CaM kinase II. We conclude that CaM kinase II is an intermediate in a complex regulatory network of the electrocyte Ca2+ pump, which also involves calmodulin and PKA.  相似文献   

5.
Adenosine, a potent autacoid produced and released in kidneys, affects nearly all aspects of renal function, and an increase in cytosolic calcium has been implicated in adenosine effects. The aim of this work was to investigate whether adenosine modifies the calcium pump present in basolateral membranes of kidney proximal tubule cells. Adenosine exerts a biphasic influence on (Ca2+ + Mg2+)-ATPase activity. Inhibition occurs up to 0.1 microM and then gradually disappears as the adenosine concentration increases to 100 microM, an effect mimicked by the adenosine analog N6-cyclohexyladenosine, which preferentially binds to A1-type receptors. In contrast, the A2 receptor agonist 5', N-ethylcarboxamideadenosine is ineffective. The A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine blocks the inhibitory effect of 0.1 microM adenosine and stimulates (Ca2+ + Mg2+)-ATPase activity in the presence of 1 mM adenosine, a concentration high enough to occupy the low-affinity A2 receptors. Inhibition by adenosine increases as medium ATP is lowered to micromolar concentrations, is maintained in the presence of pertussis toxin, and is completely abolished with 0.1 microM cholera toxin or 1 microM sphingosine. The inhibitory effect of adenosine can be reproduced by guanosine 5'-[gamma-thio]triphosphate, inositol 1,4, 5-trisphosphate or the diacylglycerol analog 12-O-tetradecanoylphorbol 13-acetate. In conjunction with the selectivity for its analogs and for its receptor agonist, the concentration profile of adenosine effects indicates that both inhibitory (A1) and stimulatory (A2) receptors are involved. The results obtained with the toxins indicate that a pathway that is modulated by G-proteins, involves a phospholipase C and a protein kinase C, and is affected by local variations in adenosine concentrations participates in the regulation of the (Ca2+ + Mg2+)-ATPase resident in basolateral membranes of kidney proximal tubules.  相似文献   

6.
Trifluoperazine dihydrochloride-induced inhibition of calmodulin-activated Ca2+ -ATPase and calmodulin-insensitive (Na+ +K+)- and Mg2+ -ATPase activities of rat and human red cell lysates and their isolated membranes was studied. Trifluoperazine inhibited both calmodulin-sensitive and calmodulin-insensitive ATPase activities in these systems. The concentration of trifluoperazine required to produce 50% inhibition of calmodulin-sensitive Ca2+ -ATPase was found to be slightly lower than that required to produce the same level of inhibition of other ATPase activities. Drug concentrations which inhibited calmodulin-sensitive ATPase completely, produced significant reduction in calmodulin-insensitive ATPases as well. The data presented in this report suggest that trifluoperazine is slightly selective towards calmodulin-sensitive Ca2+ -ATPase but that it is also capable of inhibiting calmodulin-insensitive (Na+ +K+)-ATPase and Mg2+ -ATPase activities of red cells at relatively low concentrations. Thus the action of the drug is not due entirely to its interaction with calmodulin-mediated processes, and trifluoperazine cannot be assumed to be a selective inhibitor of calmodulin interactions under all circumstances.  相似文献   

7.
Two proteins of molecular mass 13 kDa, a specific inhibitor of Na+, K+ -ATPase and another of 12 kDa, which can distinguish between Ca2, Mg2+ and Ca2+ -ATPase activities have been obtained from the pooled fractions isolated from rat brain, using Sephadex G-100 chromatography. In order to determine the key step(s), which is affected by the modulators, we have designed an in vitro experiment of phosphorylation and dephosphorylation of these ATPases in the absence and presence of the modulators. The results suggest that the phosphorylation step of Mg2+ -independent Ca2+ -ATPase is inhibited, while in Mg2+ -dependent Ca2 -ATPase, the dephosphorylation step is stimulated by the modulators. The findings support our earlier observation that the modulators are able to distinguish between Mg2+ -independent and dependent Ca2+ -ATPases activities.  相似文献   

8.
The gene for the Neurospora crassa plasma membrane H+-ATPase has been cloned and sequenced. The gene encodes for a protein of 920 amino acids with a molecular weight of 100,002. The coding region is interrupted by four introns: three near the amino terminus and one near the carboxyl terminus. The deduced amino acid sequence of the N. crassa plasma membrane H+-ATPase exhibits 75% homology to the amino acid sequence of the Saccharomyces cerevisiae plasma membrane H+-ATPase. Also, an amino acid comparison with the Na+/K+-ATPase from sheep kidney, Ca2+-ATPase from rabbit muscle, and K+-ATPase from Escherichia coli reveals that certain regions are highly conserved and suggest that these regions may serve essential functions which are common to the various cation-motive ATPases. This observation suggests that the phosphorylatable, cation-motive ATPases may function via a similar energy transduction mechanism.  相似文献   

9.
Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the crystals had p1 symmetry. A large number of helical symmetries were observed, so a three-dimensional structure was calculated by averaging both Fourier-Bessel coefficients and real-space structures of data from the different symmetries. The resulting structure clearly reveals cytoplasmic, transmembrane, and extracellular regions of the molecule with densities separately attributable to alpha and beta subunits. The overall shape bears a remarkable resemblance to the E2 structure of rabbit sarcoplasmic reticulum Ca2+-ATPase. After aligning these two structures, atomic coordinates for Ca2+-ATPase were fit to Na+,K+-ATPase, and several flexible surface loops, which fit the map poorly, were associated with sequences that differ in the two pumps. Nevertheless, cytoplasmic domains were very similarly arranged, suggesting that the E2-to-E1 conformational change postulated for Ca2+-ATPase probably applies to Na+,K+-ATPase as well as other P-type ATPases.  相似文献   

10.
A current state of researches on mechanisms of ion homeostasis regulation in the specific conditions of the uncontrolled malignant tumor growth (mainly in carcinomas) concerning the contribution of Na+,K+-ATPase, plasma membrane and sarco(endo)plasmic reticulum Ca2+-ATPases has been reviewed. Particular attention has been focused on the molecular and biochemical links providing the redistribution of the transporting ATPases isozyme pattern for the regulatory requirements of the cell signaling pathways at stable proliferation and viability in malignancy.  相似文献   

11.
A pure, enzymatically active Ca2+-dependent adenosine triphosphatase (Ca2+-ATPase) has been isolated from canine ventricular sarcoplasmic reticulum. In contrast to that derived from skeletal muscle, the Ca2+-ATPase from cardiac sarcoplasmic reticulum was more active when solubilization and subsequent purification took place in the presence of its substrates, Ca2+ and ATP. Cholate- or deoxycholate-solubilized Ca2+-ATPase is recovered following rapid glycerol dilution and centrifugation. The Ca2+-ATPase is stable and possesses hydrolytic capacities up to 4 mumol/mg/min. Sodium dodecyl sulfate-polyacrylamide gels reveal the presence of one protein in the range of 95,000 to 100,000 daltons. This method also yields purified Ca2+-ATPase from fast skeletal muscle of similar activities to those reported by other laboratories.  相似文献   

12.
The presence of a high and nonlinear Ca2+-independent (or basal) ATPase activity in rat heart preparations makes difficult the reliable measurement of sarcoplasmic reticulum (SR) Ca2+-ATPase activity by usual methods. A spectrophotometric assay for the accurate determination of SR Ca2+-ATPase activity in unfractionated homogenates from rat heart is described. The procedure is based on that reported by Simonides and van Hardeveld (1990, Anal. Biochem. 191, 321-331) for skeletal muscle homogenates. To avoid overestimation of the Ca2+-ATPase activity of cardiac homogenates that occurs when sequential measurements of total and basal ATPase activities are performed, two parallel and independent assays are required: one with low (micromolar) and other high (millimolar) calcium concentration. Addition of thapsigargin (0.2 microM) blocked totally the activity considered as Ca2+-ATPase activity. Using this method, the rat heart homogenate Ca2+-ATPase activity was 10.5 +/- 2.0 micromol. min-1 x g-1 tissue wet weight (n = 8). Likewise, a spectrophotometric assay for measuring E-type Mg2+-ATPase activity in cardiac total homogenates has been developed, comparing the following characteristics of the enzymatic activity in homogenate and a membrane-enriched fraction: first-order rate constant for ATP-dependent inactivation, Km for ATP, and effects of concanavalin A, Triton X-100, and specific inhibitors.  相似文献   

13.
We have studied erythrocyte Ca2+-ATPase as a model target for elucidating effects of activated oxygen on the erythrocyte membrane. Either intracellular or extracellular generation of activated oxygen causes parallel decrements in Ca2+-ATPase activity and cytoplasmic GSH, oxidation of membrane protein thiols, and lipid peroxidation. Subsequent incubation with either dithiothreitol or glucose allows only partial recovery of Ca2+-ATPase, indicating both reversible and irreversible components which are modeled herein using diamide and t-butyl hydroperoxide. The reversible component reflects thiol oxidation, and its recovery depends upon GSH restoration. The irreversible component is largely due to lipid peroxidation, which appears to act through mechanisms involving neither malondialdehyde nor secondary thiol oxidation. However, some portion of the irreversible component could also reflect oxidation of thiols which are inaccessible for reduction by GSH, since we demonstrate existence of different classes of thiols relevant to Ca2+-ATPase activity. Activated oxygen has an exaggerated effect on Ca2+-ATPase of GSH-depleted cells. Sickle erythrocytes treated with dithiothreitol show a heterogeneous response of Ca2+-ATPase activity. These findings are potentially relevant to oxidant-induced hemolysis. They also may be pertinent to oxidative alteration of functional or structural membrane components in general, since many components share with Ca2+-ATPase both free thiols and close proximity to unsaturated lipid.  相似文献   

14.
Myotoxin a is a muscle-damaging toxin isolated from the venom of Crotalus viridis viridis. Its interaction with the Ca2+-ATPase of sarcoplasmic reticulum (SR) vesicles purified from rabbit skeletal muscle was investigated. Myotoxin a inhibited Ca2+ loading and stimulated Ca2+-dependent ATPase without affecting unidirectional Ca2+ efflux. Its action was dose, time, and temperature dependent. Myotoxin a partially blocked the binding of specific anti-(rabbit SR Ca2+-ATPase) antibodies. It is concluded that myotoxin a attaches to the SR Ca2+-ATPase and uncouples Ca2+ uptake from Ca2+-dependent ATP hydrolysis. Myotoxin a also prevented the formation of decavanadate-induced two-dimensional crystalline arrays of the SR Ca2+-ATPase.  相似文献   

15.
1. Indomethacin inhibits calcium-stimulated adenosine triphosphatase (Ca2+-ATPase), calcium, magnesium-stimulated adenosine triphosphatase (Ca2+,Mg2+-ATPase) and magnesium-stimulated adenosine triphosphatase (Mg2+-ATPase) activities in rat brain synaptic vesicles in vitro. 2. The Ca2+-ATPase activity is most strongly affected by this drug all of the activities of ATPases tested. 3. The decrease of Ca2+-ATPase activity by addition of indomethacin is due to a decrease of Vmax. 4. The Ki values for this drug for ATP and Ca2+ in Ca2+-ATPase were 1.13 mM and 0.68 mM, respectively.  相似文献   

16.
The activation of the Ca2+-independent (basal) ATPase from rat skeletal muscle microsomes is demonstrated in the presence of enough Ca2+ to provide the simultaneous activation of the (Ca2+ + Mg2+)-ATPase. It was achieved taking advantage of the delayed inorganic phosphate (Pi) release due to the formation of a phosphoenzyme complex during the Ca2+-dependent enzymatic cycle, which is evidenced in fast experiments. The microsomes were immobilized on a filter and perfused at constant flow with an incubation medium which was briefly interrupted with a pulse of appropriate reactants to activate the ATPases, at 2 degrees C. Successive samples were collected after passing through the filter, at approx. 0.1 s intervals. The Pi effluent profile coincides with the pattern of the pulse when it activates only the Ca2+-independent ATPase, it appears delayed when the pulse activates only extra Pi production by the (Ca2+ + Mg2+)-ATPase, and it includes a rapid and a delayed component when both Ca2+-independent and Ca2+-dependent ATPases are activated simultaneously by the pulse.  相似文献   

17.
C6 glial tumor cells exposed to phorbol myristate acetate (PMA) possessed lowered cAMP content, reduced ability to accumulate cAMP in response to norepinephrine or cholera toxin, and a 3-fold increase in the concentration of norepinephrine producing 50% of the maximal rate of cAMP accumulation. Detectable effects on cAMP accumulation occurred within 10 min of exposure to PMA, and prominent effects by 2 h. PMA similarly affected cells pretreated with cycloheximide. In contrast, Ca2+-depleted preparations of control and PMA-treated cells accumulated cAMP identically in response to norepinephrine or cholera toxin. Ca2+ restoration, which increased the rate of cAMP accumulation in control cells severalfold, did not enhance cAMP accumulation in PMA-treated cells. Neither high catecholamine nor high extracellular Ca2+ concentrations reversed the suppression of cAMP accumulation by PMA. Trifluoperazine, which inhibited the Ca2+-dependent component of norepinephrine-stimulated cAMP accumulation in control cells, did not significantly reduce norepinephrine-stimulated cAMP accumulation in PMA-treated cells. Cell free preparations of control and PMA-treated cultures did not differ significantly in calmodulin content or in Ca2+-stimulated adenylate cyclase, Ca2+-dependent cAMP phosphodiesterase, and (Ca2+-Mg2+)-ATPase activities. The Ca2+ content, however, of intact cells decreased with time of PMA treatment. Within minutes after exposure to PMA, the ability of Ca2+-depleted cells to take up 45Ca was significantly reduced. Both 45Ca uptake and Ca2+-dependent cAMP accumulation were reduced over the same PMA concentration range.  相似文献   

18.
Human red blood cell membrane Ca2+-ATPase activity is stimulated in vitro by physiological concentrations of thyroid hormone. Quercetin, a flavonoid that inhibits several membrane-linked ATPases, suppressed thyroid hormone action on red cell Ca2+-ATPase activity and also interfered with binding of the hormone by red cell membranes. These effects of quercetin were dose-dependent over a range of concentrations (1-50 microM). In contrast, in the absence of thyroid hormone, quercetin at low concentrations stimulated Ca2+-ATPase activity and at 50 microM inhibited the enzyme. The effects of quercetin at low concentrations (1-10 microM), namely, stimulation of Ca2+-ATPase and inhibition of membrane-binding of thyroid hormone, mimic those of thyroid hormone and are consistent with the thyronine-like structure of quercetin. At high concentrations, quercetin is generally inhibitory of Ca2+-ATPase activity. Chalcone, fisetin, hesperetin and tangeretin are other flavonoids shown to reduce susceptibility of membrane Ca2+-ATPase to hormonal stimulation.  相似文献   

19.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

20.
Preparations of rabbit small intestine smooth muscle cell sarcolemma are capable of hydrolyzing ATP in the presence of millimolar concentrations of Mg2+ and Ca2+ and possess the activity of Mg2+,Ca2+-ATPase having a high affinity for Ca2+ (Km = 5.8 X 10(-6) M). The optimal conditions for the Mg2+,Ca2+-ATPase reaction were established. It was demonstrated that sarcolemmal preparations hydrolyze ATP, GTP, ITP and UTP almost at the same rates. The enzyme contains SH-groups that are unequally exposed to the water phase and are inhibited by 50% by p-chloromercurybenzoate and by 90% by dithionitrobenzoate. The Mg2+,Ca2+-ATPase activity is highly sensitive to oxytocin: at the concentration of 10(-7) MU/ml, the hormone completely inhibits the enzyme without affecting its Mg2+-, Ca2+- and Na+,K+-ATPase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号