首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selectivity of fishing gears used in the Baltic Sea cod fishery   总被引:1,自引:0,他引:1  
The Baltic cod (Gadus morhua) plays a very significant role in the Baltic Sea ecosystem being the major fish top predator and the most important commercial species for the Baltic Sea fishing industry. Consequently the management and understanding of the exploitation pattern of the stock is of major importance. Technical regulations, improving the selectivity of cod, have been a major management strategy and the Baltic Sea is likely to be the area where most fishing gear selectivity studies, focussing on size selectivity, have been conducted over time. The methodology for conducting and analysing selectivity data has been significantly improved in recent years. The subject is reviewed since the choice of methodology can have a significant effect on the interpretation of the outcome of selectivity experiments. Factors affecting the selectivity of trawl and gill nets are considered. Alternative ways to improve the size and species selectivity of trawls using selective devices are reviewed. Selectivity parameters from available literature are listed and the correlations of selectivity parameters to the mesh size for different gears are estimated. The historical legislation on selectivity is reviewed and the expected selectivity for trawls is estimated. Management considerations concerning the mortality of escaping and discarded fish and wider management impacts have to be considered if improving selectivity. The review is ended by conclusions including reflections on needed research in the future.  相似文献   

2.
Selectivity coefficients for binding of negative and positive ions to chitosans of different chemical composition have been determined by equilibrium dialysis. Chitosans with different fraction of acetylated units (FA of 0.01 and 0.49) generally behaved similarly in their selectivity towards both negative and positive ions. No selectivity was found in the binding of chloride and nitrate ions, while chitosan showed a strong selectivity towards molybdate polyoxyanions, with selectivity coefficients around 100. Chitosan showed a strong selectivity towards copper (Cu2+) compared to the metal ions zinc (Zn2+), cadmium (Cd2+) and nickel (Ni2+), with selectivity coefficients from 10 to 1000, while little or no selectivity could be detected with the other metal ions. Ionic strength and pH did not influence the selectivity coefficients of the chitosans towards the metal ions.  相似文献   

3.
Unintentional mortality of endangered carnivores due to non-selective trapping is important for conservation and warrants urgent attention. Currently, non-selective traps are being approved and used based on trap selectivity tests conducted according to International Organization for Standardization (ISO) guidelines. We review these guidelines and find them inadequate, because: (1) the ISO definition of selectivity does not account for relative abundance of target and non-target species and does not therefore meaningfully reflect selectivity; (2) the guidelines methodology at best quantifies relative selectivity of one trap against another, which is of limited use unless the control trap is known to have an acceptable level of absolute selectivity for the target species; (3) information on relative trap selectivity cannot simply be extrapolated elsewhere, unless species assemblage and relative species abundances are consistent. We demonstrate that the ISO definition of trap selectivity is only a simple capture proportion and therefore does not represent trap selectivity. ISO guidelines on trap selectivity should be reviewed to reflect particular ecological scenarios and we suggest how this might be done. Policy-makers, practitioners and researchers should interpret scientific results more cautiously. Trap approval decisions should be based on scientific evidence to avoid undermining the conservation of biodiversity.  相似文献   

4.
A model of the ryanodine receptor (RyR) calcium channel is used to study the energetics of binding selectivity of Ca2+ versus monovalent cations. RyR is a calcium-selective channel with a DDDD locus in the selectivity filter, similar to the EEEE locus of the L-type calcium channel. While the affinity of RyR for Ca2+ is in the millimolar range (as opposed to the micromolar range of the L-type channel), the ease of single-channel measurements compared to L-type and its similar selectivity filter make RyR an excellent candidate for studying calcium selectivity. A Poisson-Nernst-Planck/density functional theory model of RyR is used to calculate the energetics of selectivity. Ca2+ versus monovalent selectivity is driven by the charge/space competition mechanism in which selectivity arises from a balance of electrostatics and the excluded volume of ions in the crowded selectivity filter. While electrostatic terms dominate the selectivity, the much smaller excluded-volume term also plays a substantial role. In the D4899N and D4938N mutations of RyR that are analyzed, substantial changes in specific components of the chemical potential profiles are found far from the mutation site. These changes result in the significant reduction of Ca2+ selectivity found in both theory and experiments.  相似文献   

5.
PNA sequences modified with charged side chains were evaluated for base-pairing sequence selectivity under physiological conditions. PNA having negatively charged aspartic acid side chains shows higher selectivity with RNA, while PNA having positively charged lysine side chains shows higher selectivity with DNA. These observations provide insight into the binding selectivity of modified PNA in antisense and antigene applications.  相似文献   

6.
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins.  相似文献   

7.
The Kir3.1/Kir3.4 channel is activated by Gbetagamma subunits released on binding of acetylcholine to the M2 muscarinic receptor. A mechanism of channel opening, similar to that for the KcsA and Shaker K+ channels, has been suggested that involves translocation of pore lining transmembrane helices and the opening of an intracellular gate at the "bundle crossing" region. However, in the present study, we show that an extracellular gate at the selectivity filter is critical for agonist activation of the Kir3.1/Kir3.4 channel. Increasing the flexibility of the selectivity filter, by disrupting a salt bridge that lies directly behind the filter, abolished both selectivity for K+ and agonist activation of the channel. Other mutations within the filter that altered selectivity also altered agonist activation. In contrast, mutations within the filter that did not affect selectivity had little if any effect on agonist activation. Interestingly, mutation of bulky side chain phenylalanine residues at the bundle crossing also altered both agonist activation and selectivity. These results demonstrate a significant correlation between agonist activation and selectivity, which is determined by the selectivity filter, and suggests, therefore, that the selectivity filter may act as the agonist-activated gate in the Kir3.1/Kir3.4 channel.  相似文献   

8.
An atrazine (ATR) molecularly imprinted polymer (MIP) was prepared using a non-covalent strategy. The affinity and selectivity of the polymer was initially evaluated under non-equilibrium conditions and the polymer was shown to possess good template selectivity. The selectivity of the polymer was further investigated under equilibrium conditions and over a range of concentrations using Scatchard plots and Hill plots and by assessing distribution coefficients and normalised selectivity values. It was observed that both selectivity and affinity were dependent on the concentration of the ligand and that unusually selectivity and affinity were better at higher atrazine concentrations. It was concluded that this phenomenon resulted from the formation of atrazine-atrazine complexes during the pre-polymerisation stage and during rebinding and that the polymer demonstrated improved atrazine affinity when the conditions favoured complex formation.  相似文献   

9.
Previous studies of the ferret visual cortex indicate that the development of direction selectivity requires visual experience. Here, we used two-photon calcium imaging to study the development of direction selectivity in layer 2/3 neurons of the mouse visual cortex in vivo. Surprisingly, just after eye opening nearly all orientation-selective neurons were also direction selective. During later development, the number of neurons responding to drifting gratings increased in parallel with the fraction of neurons that were orientation, but not direction, selective. Our experiments demonstrate that direction selectivity develops normally in dark-reared mice, indicating that the early development of direction selectivity is independent of visual experience. Furthermore, remarkable functional similarities exist between the development of direction selectivity in cortical neurons and the previously reported development of direction selectivity in the mouse retina. Together, these findings provide strong evidence that the development of orientation and direction selectivity in the mouse brain is distinctly different from that in ferrets.  相似文献   

10.
It is found that bilayer lipid membranes acquire little cationic selectivity in the presence of systemic fungicide triforine at physiological pH, and besides potassium selectivity exceeds the sodium one. A decrease of pH to 3.5 leads to substitution of cationic selectivity by the anionic one. It is suggested that selectivity of the membranes modified by triforine is determined both by charge and dipole moments of the fungicide molecule.  相似文献   

11.
K+ channels exhibit strong selectivity for K+ ions over Na+ ions based on electrophysiology experiments that measure ions competing for passage through the channel. During this conduction process, multiple ions interact within the region of the channel called the selectivity filter. Ion selectivity may arise from an equilibrium preference for K+ ions within the selectivity filter or from a kinetic mechanism whereby Na+ ions are precluded from entering the selectivity filter. Here, we measure the equilibrium affinity and selectivity of K+ and Na+ ions binding to two different K+ channels, KcsA and MthK, using isothermal titration calorimetry. Both channels exhibit a large preference for K+ over Na+ ions at equilibrium, in line with electrophysiology recordings of reversal potentials and Ba2+ block experiments used to measure the selectivity of the external-most ion-binding sites. These results suggest that the high selectivity observed during ion conduction can originate from a strong equilibrium preference for K+ ions in the selectivity filter, and that K+ selectivity is an intrinsic property of the filter. We hypothesize that the equilibrium preference for K+ ions originates in part through the optimal spacing between sites to accommodate multiple K+ ions within the selectivity filter.  相似文献   

12.
Burykin A  Kato M  Warshel A 《Proteins》2003,52(3):412-426
The availability of structural information about biological ion channels provides an opportunity to gain a detailed understanding of the control of ion selectivity by biological systems. However, accomplishing this task by computer simulation approaches is very challenging. First, although the activation barriers for ion transport can be evaluated by microscopic simulations, it is hard to obtain accurate results by such approaches. Second, the selectivity is related to the actual ion current and not directly to the individual activation barriers. Thus, it is essential to simulate the ion currents and this cannot be accomplished at present by microscopic MD approaches. In order to address this challenge, we developed and refined an approach capable of evaluating ion current while still reflecting the realistic features of the given channel. Our method involves generation of semimacroscopic free energy surfaces for the channel/ions system and Brownian dynamics (BD) simulations of the corresponding ion current. In contrast to most alternative macroscopic models, our approach is able to reproduce the difference between the free energy surfaces of different ions and thus to address the selectivity problem. Our method is used in a study of the selectivity of the KcsA channel toward the K+ and Na+ ions. The BD simulations with the calculated free energy profiles produce an appreciable selectivity. To the best of our knowledge, this is the first time that the trend in the selectivity in the ion current is produced by a computer simulation approach. Nevertheless, the calculated selectivity is still smaller than its experimental estimate. Recognizing that the calculated profiles are not perfect, we examine how changes in these profiles can account for the observed selectivity. It is found that the origin of the selectivity is more complex than generally assumed. The observed selectivity can be reproduced by increasing the barrier at the exit and the entrance of the selectivity filter, but the necessary changes in the barrier approach the limit of the error in the PDLD/S-LRA calculations. Other options that can increase the selectivity are also considered, including the difference between the Na+...Na+ and K+...K+ interaction. However, this interesting effect does not appear to lead to a major difference in selectivity since the Na+ ions at the limit of strong interaction tend to move in a less concerted way than the K+ ions. Changes in the relative binding energies at the different binding sites are also not so effective in changing the selectivity. Finally, it is pointed out that using the calculated profiles as a starting point and forcing the model to satisfy different experimentally based constraints, should eventually provide more detailed understanding of the different complex factors involved in ion selectivity of biological channels.  相似文献   

13.
J Wu 《Biophysical journal》1991,60(1):238-251
Ionic permeation in the selectivity filter of ion channels is analyzed by a microscopic model based on molecular kinetic theory. The energy and flux equations are derived by assuming that: (a) the selectivity filter is formed by a symmetrical array of carbonyl groups; (b) ion movement is near the axis of the channel; (c) a fraction of water molecules is separated from the ion while it moves across the selectivity filter; (d) the applied voltage drops linearly across the selectivity filter; (e) ions move independently. Energy profiles, single channel conductances, and the degree of hydration of K+ in a hypothetical K+ channel are examined by varying the following microscopic parameters: ion radius and mass, channel radius, number of effective water dipoles, and number of carbonyl groups. The i-V curve is linear up to +/- 170 mV. If the positions of energy maxima and minima are fixed, this linear range is reduced to +/- 50 mV. Channel radius and ion-water interactions are found to be two major channel structural determinants for selectivity sequences. Both radius and mass of an ion are important in selectivity mediated by these interactions. The theory predicts a total of 15 possible kinetic selectivity sequences for alkali cations in ion channels with a single selectivity filter.  相似文献   

14.
The selectivity of multi-mesh monofilament nylon gillnets to Oreochromis shiranus chilwae was estimated directly by gillnetting in a small reservoir containing a population marked by size class. Numbers in each size class were estimated using the adjusted Petersen estimate. Pearson Type I curves were fitted to plots of selectivity against the fish length/mesh perimeter ratio, for two modes of capture: wedging and tangling. The generality of the selectivity curves is tested and discussed. The tangling component of the selectivity was unimportant, and for many applications the selectivity curves may be approximated by normal curves obtainable through indirect methods. However, the increase in the amplitude of the curves with mesh size, deserves further study.  相似文献   

15.
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.  相似文献   

16.
The E. coli mechanosensitive (MS) channel of small conductance (EcMscS) is the prototype of a diverse family of channels present in all domains of life. While EcMscS has been extensively studied, recent developments show that MscS may display some characteristics not widely conserved in this protein subfamily. With numerous members now electrophysiologically characterized, this subfamily of channels displays a breadth of ion selectivity with both anion and cation selective members. The selectivity of these channels may be relatively weak in comparison to voltage-gated channels but their selectivity mechanisms represent great novelty. Recent studies have identified unexpected residues important for selectivity in these homologs revealing different selectivity mechanisms than those employed by voltage gated K+, Na+, Ca2+ and Cl- channels whose selectivity filters are housed within their transmembrane pores. This commentary looks at what is currently known about MscS subfamily selectivity and begins to unravel the potential physiological relevance of these differences.  相似文献   

17.
Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues.  相似文献   

18.
Quantification of lipid selectivity by membrane proteins has been previously addressed mainly from electron spin resonance studies. We present here a new methodology for quantification of protein-lipid selectivity based on fluorescence resonance energy transfer. A mutant of M13 major coat protein was labeled with 7-diethylamino-3((4'iodoacetyl)amino)phenyl-4-methylcoumarin to be used as the donor in energy transfer studies. Phospholipids labeled with N-(7-nitro-2-1,3-benzoxadiazol-4-yl) were selected as the acceptors. The dependence of protein-lipid selectivity on both hydrophobic mismatch and headgroup family was determined. M13 major coat protein exhibited larger selectivity toward phospholipids which allow for a better hydrophobic matching. Increased selectivity was also observed for anionic phospholipids and the relative association constants agreed with the ones already presented in the literature and obtained through electron spin resonance studies. This result led us to conclude that fluorescence resonance energy transfer is a promising methodology in protein-lipid selectivity studies.  相似文献   

19.
The determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels have been studied for more than a decade. The investigations have mainly covered homomeric receptors e.g. the nicotinic acetylcholine receptor alpha7, the glycine receptor alpha1 and the serotonin receptor 5-HT(3A). Only recently, the determinants of charge selectivity of heteromeric receptors have been addressed for the GABA(A) receptor alpha2beta3gamma2. For all receptor subtypes, the selectivity determinants have been located to an intracellular linker between transmembrane domains M1 and M2. Two features of the M1-M2 linker appear to control ion selectivity. A central role for charged amino acid residues in selectivity has been almost universally observed. Furthermore, recent studies point to an important role of the size of the narrowest constriction in the pore. In the present review, these determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels will be discussed in detail.  相似文献   

20.
We investigated the effects of body mass on the selectivity of female mating preferences in two different sensory channels (acoustic and chemical) using the field cricket, Gryllus integer. We found that body mass affected female selectivity for acoustic cues: larger females were more selective than smaller females for long‐distance calls of males. In contrast, body mass did not affect selectivity for chemical cues of males, which are assessed at close range. Nevertheless, we observed selectivity for these cues. Finally, selectivity for acoustic cues was not correlated with selectivity for chemical cues. These results suggest that energetic concerns may influence mating decisions made at a distance and that the effects of body mass on mating decisions are not necessarily shared across different sensory modalities. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 160–168.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号