首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single neurons of rat spinal ganglia were investigated in adult rats using a voltage clamping technique and intracellular microelectrodes. Removing sodium ions from the extracellular medium and adding tetraethylammonium to it enabled the calcium component of action potentials to be recorded. It was found that progressive selective suppression of this component takes place during extracellular recording, indicating a decrease in calcium conductivity, while sodium and potassium levels are maintained. It is suggested that this disturbance is caused by excessive influx of calcium, strontium, or barium ions into the cell. The calcium component of action potentials was also found to depend on stimulation rate; this dependence differed where calcium ions were replaced by strontium or barium ions. A possible connection between this effect and the process of voltage-dependent inactivation of calcium channels is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 202–207, March–April, 1986.  相似文献   

2.
Under voltage clamp conditions ionic currents of neurons of the molluskHelix were studied in solutions containing barium ions. Replacement of the calcium ions in the normal external solution by barium ions led to displacement of the potassium conductivity versus membrane potential curve along the voltage axis toward more positive potentials and also to a decrease in the limiting value of the potassium conductance of the membrane. In sodium- and calcium-free solutions containing barium ions two fractions of the inward current are recorded: quickly (I) and slowly (II) inactivated. The rates of activation of these fractions are comparable. Barium ions are regarded as carriers of both fractions of the inward current. It is postulated that both fractions of the barium current are carried along the calcium channels of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 408–414, July–August, 1977.  相似文献   

3.
Changes in the characteristics of activity of sodium, calcium, and potassium channels in the surface membrane during variation of the calcium ion concentration in the extracellular and intracellular medium were investigated by the voltage clamp method during intracellular dialysis of isolated neurons of the mollusksLimnea stagnalis andHelix pomatia. Besides their direct role in passage of the current through the membrane, calcium ions were shown to have two actions, differing in their mechanism, on the functional properties of this membrane. The first was caused by the electrostatic action of calcium ions on the outer surface of the membrane and was manifested as a shift of the potential-dependent characteristics of the ion transport channels along the potential axis; the second is determined by closer interaction of calcium ions with the specific structures of the channels. During the action of calcium-chelating agents EGTA and EDTA on the inner side of the membrane the conductivity of the potassium channels is substantially reduced. With an increase in the intracellular free calcium concentration the conductivity is partially restored. The action of EGTA and EDTA on the outer side of the membrane causes a substantial decrease in the ion selectivity of the calcium channels and changes the kinetics of the portal mechanism. These changes are easily abolished by rinsing off the chelating agents or by returning calcium ions to the external medium. A specific blocking action of an increase in the intracellular free calcium concentration on conductivity of the calcium channels was found.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 69–77, January–February, 1977.  相似文献   

4.
Changes in outward potassium current occurring in response to changes in the concentration of potassium ions in the extracellular medium were investigated in unidentified neurons isolated fromHelix pomatia using an intracellular perfusion technique. It was found that introducing potassium ions (5–10 mM) into the extracellular solution produces a reversible increase in the component of outward potassium current which is dependent on extracellular calcium ions. Increased amplitude of this component occurs as a result of attenuated inactivation of the current under the action of extracellular potassium.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 351–356, May–June, 1987.  相似文献   

5.
Dyatlov  V. A. 《Neurophysiology》1988,20(5):489-492
The role of calcium ions in modulating serotonin action on acetylcholine (ACh) response in nonidentified and identified (LPa3 and RPa3) neurons ofHelix pomatia was investigated using voltage-clamping at the neuronal membrane. Exposure for 1 min to serotonin prior to ACh application reduced response to ACh in neuron LPa3 and raised it in RPa3. The same two patterns of modulating ACh-induced response were produced by extracellular application of theophylline and dibutyryl c-AMP. Injecting calcium ions into neuron LPa3 led to reinforcement of ACh-induced current in the presence of serotonin, thus changing the pattern of serotonin-induced modulation of ACh response in this unit. In neuron RPa3, the same process enhanced the serotonin-induced modulating effect on ACh response but without changing the pattern of modulation, while injected EDTA produced the reverse effects. Increased intracellular concentration of calcium ions brought about a reduction in the degree of serotonin-induced modulation of ACh response in neuron RPa3. Possible reasons are discussed for changes in serotonin-induced bimodal modulation of ACh response in test neurons produced by altering the extracellular concentration of calcium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 666–671, September–October, 1988.  相似文献   

6.
By intracellular dialysis of isolated neurons of the mollusksHelix pomatia andLimnaea stagnalis and by a voltage clamp technique the characteristics of transmembrane ionic currents were studied during controlled changes in the ionic composition of the extracellular and intracellular medium. By replacing the intracellular potassium ions by Tris ions, functional blocking of the outward potassium currents was achieved and the inward current distinguished in a pure form. Replacement of Ringer's solution in the extracellular medium with sodium-free or calcium-free solution enabled the inward current to be separated into two additive components, one carried by sodium ions, the other by calcium ions. Sodium and calcium inward currents were found to have different kinetics and different potential-dependence: mNa=1±0.5 msec, mCa=3±1 msec, hNa=8±2 msec, hCa=115±10 msec (Vm=0), GNa=0.5 (Vm=–21±2 mV), GCa=0.5 (Vm=–8±2 mV). Both currents remained unchanged by tetrodotoxin, but the calcium current was specifically blocked by cadmium ions (2·10–3 M), verapamil, and D=600, and also by fluorine ions if injected intracellularly. All these results are regarded as evidence that the soma membrane of the neurons tested possesses separate systems of sodium and calcium ion-conducting channels. Quantitative differences are observed in the relative importance of the systems of sodium and calcium channels in different species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 2, pp. 183–191, March–April, 1976.  相似文献   

7.
Early membrane currents of the isolated neuron soma of the mollusksHelix pomatia,Limnaea stagnalis, andPlanorbis corneus in normal and sodium-free solutions differing in their calcium ion concentration were investigated by the voltage clamp method. The early inward current was shown to continue when the sodium ions in the external solution were replaced by an equivalent number of calcium ions and to be increased with an increase in the concentration of those ions in all neurons of these mollusks investigated. A change in the calcium concentration in the external solution shifted the inactivation curves and also the curves of conductance for the inward current along the potential axis. It is concluded that a system of calcium channels exists in the somatic membrane of neurons in these species of mollusks.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 621–627, November–December, 1973.  相似文献   

8.
The effects of the calmodulin antagonists, calmidazolium (R 24571) and chlorpromazine on delayed outward potassium current at the somatic membrane were investigated in non-identified intracellularly perfused neurons isolated fromHelix pomatia. Voltage was clamped at the membrane. Extracellular application of these substances produced effective depression of the outward current. This effect even occurred at test substance concentrations of 10–9–10–8 M. Block-ade of delayed outward current was produced mainly as a result of suppressing the potassium current component dependent on intracellular potassium ions (Ik(Ca/in)). The possibility that the receptor for intracellular calcium responsible for modulating this current may be of a calmodulin-like nature is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 356–361, May–June, 1987.  相似文献   

9.
Investigation of isolated neurons ofHelix pomatia during intracellular dialysis revealed differences in the sensitivity of the channels for the outward potassium and inward calcium currents to changes in pH of the external medium. As a result of this difference, considerable separation of the regions of activation of the currents was obtained along the potential axis in solutions with low pH and the characteristics of the inward and outward currents could be studied during their minimal application. Channels for the outward current were shown to have some permeability for tris ions (PTris:PK=0.05), which is the reason why it is impossible to block this current completely by replacing the intracellular potassium by Tris. Channels for the inward calcium current are characterized by slow inactivation, with a first-order kinetics; their momentary voltage-current characteristic curve reveals significant Goldman's rectification. The selectivity of the calcium channels for other bivalent cations is: Ba:Sr:Ca:Mg=2.8:2.6:1.0:0.2.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 645–653, November–December, 1978.  相似文献   

10.
The action potential (AP) of the giant neuron of the molluskPlanorbis corneus exhibits an increased sensitivity of the spike overshoot to external sodium concentration in solutions containing a significantly lowered concentration of calcium. These results suggest that during the AP both sodium and calcium ions may act as carriers of the inward-directed current. During repeated responses the role of calcium ions in AP generation increases while that of sodium decreases. A delay in repolarization can occasionally be observed at the beginning of the falling phase of the AP. This delay is considered to be a result of a decrease in efficiency of the repolarizing action of the outward potassium current due to competition from a current entering the cell at the time of the falling phase. Results suggest that the carrier of this inward current is calcium.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 109–117, July–August, 1969.  相似文献   

11.
The effects of injecting cells with adenosine monophosphate (AMP) and cyclic adenosine monophosphate (cAMP) on calcium current were investigated during intracellular dialysis ofHelix pomatia neurons. Microiontophoretically injected AMP was found to lead to reinstatement of calcium current following dialysis-induced wash-out, as well as considerable stabilization of this current with the extracellular medium at normal pH. Current-voltage relationship of the current would then undergo a 10 mV shift towards depolarization values. Perfusing the cell with a solution containing 10 mM AMP then produced a qualitatively identical effect. Injecting the neuron iontophoretically with cAMP led to a decline in the amplitude of calcium current under the same conditions. Neither raising the pH of the intracellular solution to 8.1 nor adding 4-aminopyridine in order to depress the hydrogen ion current produced a qualitative alteration in the effects of injecting AMP and cAMP on calcium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 769–776, November–December, 1988.  相似文献   

12.
Outward currents remaining after addition of 20–50 mM of tetraethylammonium (TEA) ions to the extracellular or intracellular solution, were investigated in perfused isolatedHelix neurons. After this addition, the inactivated inward current carried by potassium ions, the potential-dependent and kinetic characteristics of which differ from those of potassium outward currents suppressed by TEA, is preserved in the membrane. A component dependent on the inward calcium current was found in this TEA-resistant outward current; it was abolished by replacement of the extra-cellular calcium ions by magnesium ions, by blocking of the calcium channels by extracellular cadmium ions, and by their destruction by intracellular fluoride ions. Increasing the intracellular concentration of free calcium ions by perfusing the cell with solutions containing calcium-EGTA buffer potentiated the TEA-resistant component of the outward current, whereas removal of these ions with EGTA weakened it. It is concluded that a system of outward current channels whose activation depends on the presence of calcium ions near the inner surface of the membrane is present in the somatic membrane. It is suggested that to keep these channels capable of being activated, calcium ions must bind with the structures forming their internal opening.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 460–468, September–October, 1979.  相似文献   

13.
The time course of weakening of inward calcium currents (inactivation) during prolonged (of the order of 1 sec) depolarizing shifts of membrane potential was studied in isolated dialyzed neurons of snailHelix pomatia. This decay of the current recorded in this way can be approximated by two exponential functions with time constants of 20–70 and 250–350 msec, respectively. With an increase in pH of the intracellular solution to 8.5 the fast component of the decay disappeared completely; the kinetics of the slow component in this case was very slightly retarded. It is concluded that the fast component of decay of the recorded current does not reflect a change in the calcium current but is due to parallel activation of the nonspecific outward current; the slow component, however, is true in activation of the calcium current. The rate of inactivation of this current was shown to be determined by its maximal value and not by the level of the depolarizing potential shift and it depends on the conditions of accumulation of calcium ions near the inner surface of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 525–531, September–October, 1982.  相似文献   

14.
Two new types of calcium channels were discovered during research in ionic currents in the somatic membrane ofHelix pomatia neurons, using an intracellular perfusion technique. Apart from the principal calcium current described in the literature with a holding potential of about –110 mV, an additional calcium current was observed activated at depolarizations of –40 to –80 mV and was not reduced when the cell was perfused with solutions containing fluoride anions. The kinetics of this current were well described in the context of the Hodgkin and Huxley model with a time constant of activation of 6–8 msec and of inactivation of 300–600 msec. It increased in amplitude as the Ca++ rose in the cellular environment but was reduced by extracellular addition of the Ca++ antagonists Co++, Ni++, and Cd++, and the organic blockers nifedipine and verapamil. The association constants of these substances with corresponding channels determined from the maximum of the current-voltage relationship were 2 (Ca++), 3 (Co++), 0.06 (nifedipine), and 0.2 mM (verapamil). The properties detected in this component of calcium conductance are compared with those of calcium channels in other excitatory formations and its possible functional role is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 627–633, September–October, 1985.  相似文献   

15.
The effects of cAMP and serotonin (5-HT) on calcium current (ICa) were investigated inHelix pomatia neurons using voltage clamp and intracellular perfusion techniques. Three types of neuronal response to extracellular application of 5-HT (1–10 µM) were found: reversible blockage of calcium conductance, absence of response, and increase in ICa amplitude. Intracellular application of exogenous cAMP was also found to produce an increase in ICa in cells stimulated by 5-HT action. Effects of 5-HT and cAMP were non-additive under these circumstances and were potentiated equally by cyclic nucleotide phosphodiesterase inhibitor. Applying cAMP led to no noticeable increase in ICa amplitude in cells with calcium conductance unchanged or blocked by 5-HT. Findings would indicate that the stimulating action of 5-HT is mediated by a rise in intracellular level of cAMP. It is postulated that two types of calcium channels differing in their dependence on cAMP metabolism exist; the presence of cAMP-dependent calcium channels at the neuronal membrane fits in with a certain type of 5-HT receptor also present in the cell, moreover. A new approach is suggested for research on isolated neurons, i.e., that of functional identification.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 605–512, October–September, 1990.  相似文献   

16.
The rapidly exchanging intracellular calcium stores play an important role in control of cytoplasmic calcium homeostasis and in generation of intracellular calcium signals. These stores are specific intracellular compartments which are able to accumulate and release calcium in response to appropriate stimuli. Two types of stores can be distinguished in nonmuscle cells based on substances discharging these stores: (1) Ca2+-sensitive and (2) inositol-1,4,5-trisphosphate-sensitive intracellular depots. These two depots can be either separate intracellular compartments or a single compartment that shares both releasing mechanisms. The state of the art of our understanding of the cytoplasmic calcium release is the focus of this review.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 9–15, January–February, 1994.  相似文献   

17.
The paper summarizes recent data about the mechanisms that determine the kinetics and amplitude of transient elevations in the intracellular level of free calcium (calcium signals) in excitable cells. The relative role of various types of voltage-operated calcium channels, fast cytosolic buffering, active accumulation in intracellular stores, and extrusion of ions from the cell are discussed. New technical approaches enabling resolution of these questions are described.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 5–8, January–February, 1994.  相似文献   

18.
Since calcium plays an important role in vitellogenin binding and uptake in Nauphoeta cinerea and because calcium channels have been described in follicles of this species, we investigated the effect of various ions, ionophores, and ion channel blockers on vitellogenin uptake in vitro. Calcium significantly stimulated vitellogenin uptake; this effect could be substituted best by barium and less well by strontium and magnesium. The stimulatory effect of calcium, and to a certain extent also that of barium, was dependent on the vitellogenin concentration, whereas the effect of strontium and magnesium was not. In the presence of calcium, vitellogenin uptake was inhibited by barium, strontium, and magnesium as well as by the transition elements nickel, cobalt, and zinc, but not by manganese which had a stimulatory effect. Valinomycin, verapamil, tetraethylammonium, and atropine reduced vitellogenin uptake, while amiloride and ouabain were ineffective. Our results indicate that calcium inward (and possibly potassium outward) fluxes play an important role in vitellogenin uptake.  相似文献   

19.
The expression of two types of voltage-gated ion channels of the inflowing current ("fast" sodium channels, sensitive to tetrodotoxin, and high-threshold calcium channels) was detected by electrophysiological methods in the membrane ofXenopus oocytes, after injection of poly(A)+-mRNA from the brains of 18- to 20-day-old rats. When Cd2+ (200 µmoles/liter) was added to the extracellular solution, the barium current through the expressed calcium channels was completely suppressed, but no sensitivity to D-600 (20 µmoles/liter) and nitrendipine (50 µmoles/liter) was exhibited. A peptide blocker of the high-threshold calcium channels of the neuron membrane, -conotoxin GVIA, in a concentration of 1 µmole/liter led to 20–40 min suppression of the barium current expressed in the oocyte. Steady-state inactivation of this current could be described by the Boltzman formula, using the values of the half-inactivation potential V1/2=–50 mV and the steepness factor k=14 mV. It is concluded that in potential-dependent and pharmacological properties, the calcium channels expressed in the oocyte, despite the absence of any appreciable time-dependent inactivation, most resemble the high-threshold inactivatable (HTI- or N-type) calcium channels of the neuron membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 344–353, May–June, 1991.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号