首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Submerged conidia and blastospores of the entomopathogenic fungus Isaria fumosorosea are produced in several liquid culture media. However, yields and the ecological fitness of these propagules vary according to culture media composition. In most culture media, hyphae, blastospores and submerged conidia are white but we found that in some media they develop a brown pigmentation. A dark pigment was extracted from brown-pigmented propagules and analyzed by IR spectroscopy. Adsorption bands coincided to those characteristics of melanins.Hadamard's matrices were employed in order to increase submerged conidia yields and brown pigmentation of fungal propagules. Media containing 20–30 mg/l of FeSO4·7H2O and 6–12 mg/l of CuSO4·5H2O allowed reaching the highest pigmentation (9 in a hedonic scale). A maximal concentration of submerged conidia of 1.0 (±1.2) × 1012 cell/l was achieved after 120 h of liquid culture in a improved culture medium, containing 25 ml/l of Polyethylene glycol (MW 200), substance which enhanced submerged conidia production, reducing free mycelia or mycelial pellets formation. In the improved medium, it was estimated that more than 60% of produced biomass corresponded to submerged conidia and blastospores, while in other media, mycelia were the main product (80–97%).  相似文献   

2.
Summary Beauveria bassiana can produce three spore types; aerial conidia, submerged conidia and blastospores. We have examined the spore surface characteristics (hydrophobicity and cell-wall surface lectins), thermal inactivation and the virulence towards the migratory grasshopper, Melanoplus sanguinipes, of each of the three spore types. The hydrophobicities of the aerial and submerged conidia were quite similar. Blastospores were less hydrophobic than either of the two types of conidia. Hydrophobic interactions are thought to play a significant role in attachment of the spore to the host organism. However, the less hydrophobic blastospores were slightly more virulent (LT50 of 6.50 days) when compared to the aerial and submerged conidia (7.12 and 7.24 days), respectively. The lectin-binding characteristics of the aerial and submerged conidia were very similar but differed from that of blastospores. Growth of blastospores on a variety of carbohydrates did not affect their lectin-binding characteristics. Spore viability measurements showed that aerial and submerged conidia retained their viability for a longer period than blastospores. The similarity in hydrophobicity, stability, virulence and lectin-binding of aerial and submerged conidia make the latter an ideal candidate for mycoinsecticide production since they can be recovered after growth on inexpensive substrates.Offprint requests to: G. G. Khachatourians  相似文献   

3.
Submerged conidia and blastospores of the entomopathogenic fungus Isaria fumosorosea are produced in several liquid culture media. However, yields and the ecological fitness of these propagules vary according to culture media composition. In most culture media, hyphae, blastospores and submerged conidia are white but we found that in some media they develop a brown pigmentation. A dark pigment was extracted from brown-pigmented propagules and analyzed by IR spectroscopy. Adsorption bands coincided to those characteristics of melanins.Hadamard's matrices were employed in order to increase submerged conidia yields and brown pigmentation of fungal propagules. Media containing 20–30 mg/l of FeSO4·7H2O and 6–12 mg/l of CuSO4·5H2O allowed reaching the highest pigmentation (9 in a hedonic scale). A maximal concentration of submerged conidia of 1.0 (±1.2) × 1012 cell/l was achieved after 120 h of liquid culture in a improved culture medium, containing 25 ml/l of Polyethylene glycol (MW 200), substance which enhanced submerged conidia production, reducing free mycelia or mycelial pellets formation. In the improved medium, it was estimated that more than 60% of produced biomass corresponded to submerged conidia and blastospores, while in other media, mycelia were the main product (80–97%).  相似文献   

4.

Objective

To study the ability of a commercial Penicillium camemberti strain, used for Camembert type cheese ripening, to produce conidia during growth in liquid culture (LC), in media containing different sources of nitrogen as, industrially, conidia are produced by growth at the surface of a solid state culture because conidiation in stirred submerged aerobic LC is not known.

Results

In complex media containing peptic digest of meat, hyphae ends did not differentiate into phialides and conidia. Contrarily, in a synthetic media containing KNO3 as sole nitrogen source, hyphae ends differentiated into phialides producing 0.5 × 107 conidia/ml. Conidia produced in LC were 25 % less hydrophobic than conidia produced in solid culture, and this correlates with a seven-times-lower expression of the gene rodA encoding hydrophobin RodA in the mycelium grown in LC.

Conclusion

Conidiation of P. camembertii is stimulated in iquid medium containing KNO3 as sole source of nitrogen and therefore opens up opportunities for using liquid medium in commercial productions.
  相似文献   

5.
Conidial tolerance to the upper thermal limits of summer is important for fungal biocontrol agents, whose conidia are formulated into mycoinsecticides for field application. To develop an efficient assay system, aerial conidia of eight Metarhizium anisopliae, four M. anisopliae var. anisopliae, and six M. anisopliae var. acridum isolates with different host and geographic origins were wet-stressed for ≤180 min at 48 °C or incubated for 14 d colony growths at 10-35 °C. The survival ratios (relative to unstressed conidia) of each isolate, examined at 15-min intervals, fit a logistic equation (r2 ≥ 0.975), yielding median lethal times (LT50s) of 14.3-150.3 min for the 18 isolates stressed at 48 °C. Seven grasshopper isolates from Africa had a mean LT50 of 110 (73-150) min, but could not grow at 10 or 15 °C. The mean LT50 of five non-grasshopper isolates capable of growing at 10-35 °C was 16 (10-26) min only. Three isolates with typically low (type I), medium (type II), and high (type III) levels of tolerance to 48 °C were further assayed for ≤4-d tolerance of their conidia to the wet stress at 38, 40, 42, or 45 °C. The resultant LT50s decreased to 20, 53 and 167 min at 48 °C from 507, 1612, and 8256 min at 38 °C for types I, II and III, respectively. For the distinguished types, the logarithms of the LT50s were significantly correlated to the temperatures of 38-48 °C with an inverse linearity (r2 ≥ 0.88). The method developed to assay quantitatively fungal thermotolerance would be useful for screening of fungal candidates for improved pest control in summer.  相似文献   

6.
AIMS: This study was to illustrate the relationship between the thermotolerance and the contents of hydrophobin-like or formic-acid-extractable (FAE) proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus produced on rice-based substrate. METHODS AND RESULTS: Survival indices of 11 isolates were separately assessed as a ratio of the viability of conidia after 3-150 min thermal stress at 48 degrees C over that of unstressed conidia and fitted well to a survival model (r(2) >/= 0.97). For a given isolate, the fitted model generated an LT(50), the time for 50% viability loss under the stress. The LT(50)s of six B. bassiana isolates (10.1-61.9 min) and five P. fumosoroseus isolates (2.8-6.2 min) were correlated (r(2) = 0.81) with FAE protein contents (6.9-23.4 microg mg(-1)). The survival indices of a fixed B. bassiana isolate after 45-min thermal stress at 48 degrees C were also correlated to the FAE protein contents from conidia produced on glucose-, sucrose-, or starch-based substrate (0.79 相似文献   

7.
Two isolates of Metarhizium spp. were studied for propagule production, because of their pathogenic activity towards locusts and grasshoppers (Mf189 = M. flavoviride (or M. anisopliae var. acridum) strain IMI 330189, and Mf324 = M. flavoviride strain ARSEF324). Both isolates were grown in seven different liquid media, which have been developed for mass production of various Hyphomycetes, considered as candidates for microbial control of noxious insects. Shake-flask experiments were carried out at 28 °C in the dark. Production was quantified for 72 h and the effects of the tested media were evaluated on propagule concentration, morphology and pathogenicity. Based on preliminary experiments, all tested media were supplemented with 0.4% Tween 80 to avoid the formation of pellets and to produce unicellular propagules. Submerged propagule yields were higher withMf189 than with Mf324 in all seven media. While high concentrations of propagules (1.4 to 2.4 × 108 propagules ml-1 for MF189 and1.4 to 8.3 × 107 propagules ml-1 for Mf324) were produced in four media (Adamek, Catroux, Jackson, and Jenkins–Prior media), production of propagules was lower in the three other media (Goral, Kondryatiev, and Paris media). Both isolates produced oblong blastospore-like propagules, except in Kondryatiev medium in which they provided ovoid propagules. In this case, Mf189 submerged propagules looked like aerial conidia, but scanning observations did not demonstrate a typical conidiogenesis via phialides. In Kondryatiev medium, Mf324 submerged propagules were significantly smaller than aerial conidia. Infection potential of submerged propagules was assayed on Schistocerca gregaria. Second-instar larvae fed for 48 h on fresh wheat previously contaminated by a spraying suspension of each inoculum titrated at 107 propagules ml-1. All seven media produced submerged propagules that were highly infectious for S. gregaria larvae. Shake flask culture assays permitted us to select three low-costmedia, Adamek, Jenkins–Prior, and Catroux for improving scale-up of liquid fermentation focused on mass-production of Metarhizium propagules for mycoinsecticides devoted to locust control. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
The entomopathogenic fungus Beauveria bassiana produces at least three distinct single-cell propagules, aerial conidia, vegetative cells termed blastospores, and submerged conidia, which can be isolated from agar plates, from rich broth liquid cultures, and under nutrient limitation conditions in submerged cultures, respectively. Fluorescently labeled fungal cells were used to quantify the kinetics of adhesion of these cell types to surfaces having various hydrophobic or hydrophilic properties. Aerial conidia adhered poorly to weakly polar surfaces and rapidly to both hydrophobic and hydrophilic surfaces but could be readily washed off the latter surfaces. In contrast, blastospores bound poorly to hydrophobic surfaces, forming small aggregates, bound rapidly to hydrophilic surfaces, and required a longer incubation time to bind to weakly polar surfaces than to hydrophilic surfaces. Submerged conidia displayed the broadest binding specificity, adhering to hydrophobic, weakly polar, and hydrophilic surfaces. The adhesion of the B. bassiana cell types also differed in sensitivity to glycosidase and protease treatments, pH, and addition of various carbohydrate competitors and detergents. The outer cell wall layer of aerial conidia contained sodium dodecyl sulfate-insoluble, trifluoroacetic acid-soluble proteins (presumably hydrophobins) that were not present on either blastospores or submerged conidia. The variations in the cell surface properties leading to the different adhesion qualities of B. bassiana aerial conidia, blastospores, and submerged conidia could lead to rational design decisions for improving the efficacy and possibly the specificity of entomopathogenic fungi for host targets.  相似文献   

9.
Susceptibility of the mustard beetle (Phaedon cochleariae) and the cabbage stem flea beetle (Psylliodes chrysocephala) to six isolates of the entomogenous, hyphomycete fungus Metarhizium anisopliae, was investigated. A farther six isolates were assayed against P. cochleariae only. The isolates originated from hosts of various insect orders. Five of the six isolates tested against P. chrysocephala and P. cochleariae were infective for both species whereas one isolate, V107, was non‐pathogenic to both. The level of virulence of different M. anisopliae isolates for these chrysomelid beetles varied considerably. Isolates V90 and V93 were highly virulent to P. chrysocephala and P. cochleariae respectively but were significantly less virulent against the alternate host species. The LT50 of isolate V90 for P. chrysocephala was 7 days at 4 x 107 conidia/ml and its LC50 value was 16 x 105 conidia/ml. The LT50 of V93 for P. cochleariae was approximately 8 days at 4 X 108 conidia/ml and its LC50 value was 3 x 107 conidia/ml. Following inoculation, germinating conidia of all isolates produced appressoria on the cuticular surface of both hosts suggesting that specificity is determined at later stages of infection.  相似文献   

10.
The cypress aphid (Cinara cupressi) is listed among the hundred most important invasive pests in the world. In Chile, it was first detected in 2003 and currently is present throughout the country. In the course of a survey of their natural enemies in Chile, three strains of entomopathogenic fungi were isolated. The isolates were identified and tested against the aphid in laboratory experiments. Two further entomopathogenic fungi (ARSEF 5126 and 5128), formulated in the mycoinsecticides Vertalec® and Mycotal®, were used as reference strains. The three Chilean isolates were identified genomically as Lecanicillium attenuatum and were pathogenic to third-instar nymphs. The isolate ARSEF 13279 yielded the lowest overall lethal concentration (LC50), 3 × 105 conidia ml?1 at four days post-inoculation, and the shortest lethal time (LT50), 3.7 days after inoculation with 106 conidia ml?1. The results indicate that the isolates have considerable potential as microbial control agents of the invasive cypress aphid.  相似文献   

11.
To properly characterize several isolates of Paecilomyces fumosoroseus, a fungal entomopathogen of whiteflies (Homoptera: Aleyrodidae) and other insect pests for biocontrol purposes, virulence towards Trialeurodes vaporariorum, and subtilisin-like (Pr1) and trypsin-like (Pr2) protease activity during propagule production were investigated in monospore cultures (MCs). The virulence of three MCs towards second instar whiteflies was measured and expressed as lethal median concentration (LC50). Number and widthlength ratio of propagules (blastospores, hyphal bodies, short hyphae, submerged conidia) and extracellular proteolytic activity was determined simultaneously in liquid medium. Total protease activity was assayed with azocasein, Pr1 and Pr2 activity was determined with the substrates N-Succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and N-Benzoyl-Phe-Val-Arg-pnitroanilide, respectively. Natural variability in virulence, propagule production and cuticle-degrading proteases among isolates was observed. Bioassays showed a LC50 of 1.1 x 1,000, 2.5 x 10,000 and 7.6 x 10,000 conidia/ml for MCs EH-506/3, EH-503/3 and EH-520/3, respectively, EH-506/3 being the most virulent isolate. Isolate EH-503/3 produced the highest yield of propagules (7.7 x 10000000 propagules/ml), followed by EH-520/3 with 6.4 x 10000000 and EH-506/3 with 1.0 x 10000000 propagules/ml. Subtilisin-like (Pr1) and trypsin-like (Pr2) activity was present in the three MCs. Subtilisin-like (Pr1) activity was highest (745.7 UPr1/ml at 120 h) in the most virulent isolate, EH-506/3, pointing at Pr1 as a phenotypic marker of virulence for P. fumosoroseus. EH-506/3 appears to be a good candidate for whitefly biocontrol due to its high virulence, Pr1 concentration and rapid transition to blastospores in submerged liquid medium.  相似文献   

12.
Thermotolerance of entomopathogenic (insect-killing) fungi should be seriously considered before industrialization. This work describes the feasibility of millet grain as a substrate for production of thermotolerant Beauveria bassiana (Bb) GHA and ERL1170 and Metarhizium anisopliae (Ma) ERL1171 and ERL1540 conidia. First, conidial suspensions of the Bb isolates, produced on millet grain in polyethylene bags, were exposed to five temperatures (43–47°C) at 15-min intervals for up to 120 min (experiment I). Agar-based quarter-strength (¼) Sabouraud dextrose agar supplemented with yeast extract (SDAY) and whey permeate media served as controls. Millet-grain-based culture was superior in producing the most thermotolerant Bb conidia, followed by whey permeate agar and ¼SDAY-based cultures. Secondly, to compare the thermotolerance of conidia produced at the same conditions, the Bb isolates were then produced on agar-based millet powder medium, with ¼SDAY and whey permeate agar media as controls, and the two Ma isolates were added (experiment II). They were then exposed to the same temperatures as above. More thermotolerant Bb and Ma conidia were produced on millet powder agar than on whey permeate agar and ¼SDAY overall. These results suggest that millet grain can be used as a substrate to produce thermotolerant conidia in a mass production system.  相似文献   

13.
The bronze bug Thaumastocoris peregrinus is an invasive pest, affecting Eucalyptus plantations worldwide. Although its natural enemy Cleruchoides noackae has been tested for the biological control of this pest, other strategies like the use of native entomopathogenic fungi are needed. For this, native virulent fungal isolates should be selected, massively multiplied in an efficient way, and prepared to obtain a stable product. Isolates of native Beauveria bassiana obtained from T. peregrinus and from different collections were screened for their virulence towards this insect and for their amenability to be massively produced in a low-input liquid submerged fermentation and prepared as a dry powder. Three out of six virulent strains were suitable for their massive production in a 2% corn flour suspension, achieving 109 submerged propagules/g of dehydrated preparation. The LC50 achieved by the dry submerged propagules did not differ from the LC50 of fresh aerial conidia. The proposed dual selection of strain and a complex substrate, and the procedures leading to the production of a dry preparation, allowed for high viability and virulence of the fungal spores of three strains.  相似文献   

14.
《Fungal biology》2020,124(8):714-722
We investigated the comparative susceptibility to heat and UV-B radiation of blastospores and aerial conidia of Metarhizium spp. (Metarhizium robertsii IP 146, Metarhizium anisopliae s.l. IP 363 and Metarhizium acridum ARSEF 324) and Beauveria bassiana s.l. (IP 361 and CG 307). Conidia and blastospores were produced in solid or liquid Adámek-modified medium, respectively, and then exposed to heat (45 ± 0.2 °C) in a range of 0 (control) to 360 min; the susceptibility of fungal propagules to heat exposures was assessed to express relative viability. Similarly, both propagules of each isolate were also exposed to a range of 0 (control) to 8.1 kJ m−2 under artificial UV-B radiation. Our results showed that fungal isolates, propagule types and exposure time or dose of the stressor source play critical roles in fungal survival challenged with UV-B and heat. Conidia of ARSEF 324, IP 363, IP 146 and IP 361 exposed to heat survived significantly longer than their blastospores, except for blastospores of CG 307. Conidia and blastospores of IP 146 and IP 363 were equally tolerant to UV-B radiation. We claim that blastospores of certain isolates may be promising candidates to control arthropod pests in regions where heat and UV-B are limiting environmental factors.  相似文献   

15.
Plectosphaerella cucumerina was identified as a potential bioherbicide for controlling Cirsium arvense in Canada and New Zealand. The current study evaluated production conditions using two isolates (one from each country) to determine whether the yield and shelf life of inoculum are suitable for mass production. Mycelial growth and sporulation in culture both increased from 15°C to 25°C and declined at higher temperatures with no mycelial growth at 37°C. The Canadian isolate produced fewer conidia than a New Zealand isolate. Potato dextrose-based liquid media with moderate to high concentrations of carbohydrates (25%, 50%, and 100%) maximised conidia production and these base media produced conidia with the highest germination rate (>80%) both at harvest and after 4 weeks stored at 4°C in 2.5% glycerol, 40% milk glycerol or after air drying. However, after 10-week storage, the conidia failed to germinate. Sporulation occurred during growth on all solid substrates tested (rice, rolled barley, and triticale), but conidial germination was highest on rice and barley, both before and after air drying. By contrast to conidia, 90% of mycelia-infested barley grains were viable after 3 years of storage at room temperature, although viability was lost by this time on the other substrates. This study has shown that the nutritional base is an important determinant of sporulation and shelf life for P. cucumerina. Although the yield of conidia in liquid medium was adequate to justify further development of P. cucumerina as a bioherbicide, improvement in its shelf life, or alternate formulation types that extend the shelf life, must be made for commercial efficiency.  相似文献   

16.
Interactions between the nematode Heterorhabditis bacteriophora isolate JPM4 and the fungus Metarhizium anisopliae, isolates LPP45 and LPP39, were studied during dual infections of Diatraea saccharalis. Mortality, production of infective juveniles (IJs) and production of conidia were evaluated. A positive effect was demonstrated for host mortality in duel infections of JPM4 and LPP39, causing 100% mortality with LT50 and LT95 values of 1.8 and 2.8 days, respectively. Higher values were seen when using the nematode or fungi individually. However, a combination of JPM4 + LPP39 caused a significant reduction in IJ production. The results show that faster time to death, a moderately virulent fungal isolate could be combined with the nematode, however at the expense of IJ production.  相似文献   

17.
The use of artificial freezing tests, identification of biomarkers linked to or directly involved in the low-temperature tolerance processes, could prove useful in applied strawberry breeding. This study was conducted to identify genotypes of diploid strawberry that differ in their tolerance to low-temperature stress and to investigate whether a set of candidate proteins and metabolites correlate with the level of tolerance. 17 Fragaria vesca, 2 F. nilgerrensis, 2 F. nubicola, and 1 F. pentaphylla genotypes were evaluated for low-temperature tolerance. Estimates of temperatures where 50 % of the plants survived (LT50) ranged from ?4.7 to ?12.0 °C between the genotypes. Among the F. vesca genotypes, the LT50 varied from ?7.7 °C to ?12.0 °C. Among the most tolerant were three F. vesca ssp. bracteata genotypes (FDP821, NCGR424, and NCGR502), while a F. vesca ssp. californica genotype (FDP817) was the least tolerant (LT50 ?7.7 °C). Alcohol dehydrogenase (ADH), total dehydrin expression, and content of central metabolism constituents were assayed in select plants acclimated at 2 °C. The LT50 estimates and the expression of ADH and total dehydrins were highly correlated (r adh = ?0.87, r dehyd = ?0.82). Compounds related to the citric acid cycle were quantified in the leaves during acclimation. While several sugars and acids were significantly correlated to the LT50 estimates early in the acclimation period, only galactinol proved to be a good LT50 predictor after 28 days of acclimation (r galact = 0.79). It is concluded that ADH, dehydrins, and galactinol show great potential to serve as biomarkers for cold tolerance in diploid strawberry.  相似文献   

18.
球孢白僵菌Beauveria bassiana (Balsamo) Vuillemin是最重要的昆虫病原真菌, 广泛用于防治世界各地的多种害虫。本研究评价了球孢白僵菌9个菌株对赤拟谷盗Tribolium castaneum (Herbst)成虫的致病性。将15头赤拟谷盗成虫浸入到4个浓度 (1×106, 1×107, 1×108 和 1×109 个分生孢子/mL)的白僵菌菌株中 20 s, 14 d内每日记录成虫的死亡率。结果表明: IRAN 440C菌株对赤拟谷盗成虫的LC50最低 (5.04×107 个分生孢子/mL), IRAN 187C菌株的最高(5.05×108 个分生孢子/mL); DEBI 005菌株对赤拟谷盗成虫的LT50最短(2.88 d), DEBI 014菌株的最长(4.96 d)。根据LC50, LT50和死亡率结果得出IRAN 440C是防治这一害虫的理想菌株。  相似文献   

19.
An increase in environmental temperature can deleteriously affect organisms. This study investigated whether the semiterrestrial estuarine crab Neohelice granulata uses emersion behavior as a resource to avoid thermal stress and survive higher aquatic temperatures. We also examined whether this behavior is modulated by exposure to high temperature; whether, during the period of emersion, the animal loses heat from the carapace to the medium; and whether this behavior is altered by the temperature at which the animal has been acclimated. The lethal temperature for 50% of the population (LT50) was determined through 96-h mortality curves in animals acclimated at 20 °C and 30 °C. The behavioral profile of N. granulata during thermal stress was based on monitoring crab movement in aerial, intermediary, and aquatic zones. Acclimation at a higher temperature and the possibility of emersion increased the thermotolerance of the crabs and the synergistic effect of acclimation temperature. The possibility of leaving the hot water further increased the resistance of these animals to thermal stress. We observed that when the crab was subjected to thermal stress conditions, it spent more time in the aerial environment, unlike under control conditions. Under the experimental conditions, it made small incursions into the aquatic environment and stayed in the aerial environment for a longer time in order to cool its body temperature. The animals acclimated at 20 °C and placed into water at 35 °C remained in the aerial zone. The animals acclimated and maintained at 30 °C (control) that were placed in water at 35 °C with the possibility of emerging into hot air transited more frequently between the aquatic and aerial zones than did the animals that were put in water at 35 °C with the possibility of emerging into a cooler air environment. We conclude that emergence behavior allows N. granulata to survive high temperatures and that this behavior is influenced by acclimation temperature.  相似文献   

20.
Twenty local isolates of entomopathogenic fungi were determined for control of the larvae and adults of Culex quinquefasciatus. In a laboratory experiment, a Penicillium sp. CM-010 caused 100 % mortality of third-instar larvae within 2 h using a conidial suspension of 1 × 106 conidia ml?1. Its LC50 was 3 × 105 conidia ml?1, and the lethal time (LT50) was 1.06 h. Cloning and sequencing of its internal transcribed spacer region indicated that this Penicillium species is Penicillium citrinum (100 % identity in 434 bp). Mortality of the adult was highest with Aspergillus flavus CM-011 followed with Metarhizium anisopliae CKM-048 from 1 × 109 conidia ml?1. P. citrinum CM-010 at 1 × 106 conidia ml?1 killed 100 % larvae within 2 h while Bacillus thuringiensis var. israelensis at 5 ITU ml?1 required 24 h. This P. citrinum CM-010 also greatly reduced survival of C. quinquefasciatus larvae in an unreplicated field test. Light and transmission electron micrographs showed that the fungal conidia were ingested by the larvae and deposited in the gut. The metabolite patulin was produced by P. citrinum CM-010 instead of citrinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号