首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cultivation-independent technique for genetic profiling of PCR-amplified small-subunit rRNA genes (SSU rDNA) was chosen to characterize the diversity and succession of microbial communities during composting of an organic agricultural substrate. PCR amplifications were performed with DNA directly extracted from compost samples and with primers targeting either (i) the V4–V5 region of eubacterial 16S rRNA genes, (ii) the V3 region in the 16S rRNA genes of actinomycetes, or (iii) the V8–V9 region of fungal 18S rRNA genes. Homologous PCR products were converted to single-stranded DNA molecules by exonuclease digestion and were subsequently electrophoretically separated by their single-strand-conformation polymorphism (SSCP). Genetic profiles obtained by this technique showed a succession and increasing diversity of microbial populations with all primers. A total of 19 single products were isolated from the profiles by PCR reamplification and cloning. DNA sequencing of these molecular isolates showed similarities in the range of 92.3 to 100% to known gram-positive bacteria with a low or high G+C DNA content and to the SSU rDNA of γ-Proteobacteria. The amplified 18S rRNA gene sequences were related to the respective gene regions of Candida krusei and Candida tropicalis. Specific molecular isolates could be attributed to different composting stages. The diversity of cultivated bacteria isolated from samples taken at the end of the composting process was low. A total of 290 isolates were related to only 6 different species. Two or three of these species were also detectable in the SSCP community profiles. Our study indicates that community SSCP profiles can be highly useful for the monitoring of bacterial diversity and community successions in a biotechnologically relevant process.  相似文献   

2.
Separation of bacterial DNA from human DNA in clinical samples may have an important impact on downstream applications, involving microbial diagnostic systems. We evaluated two commercially available reagents (MolYsis®, Molzym GmbH & Co. KG, Bremen and Pureprove®, SIRS-Lab GmbH, Jena, both Germany) for their potential to isolate and purify bacterial DNA from human DNA. We chose oral samples, which usually contain very high amounts of both human and bacterial cells. Three different DNA preparations each were made from eight caries and eight periodontal specimens using the two reagents above and a conventional DNA extraction strategy as reference. Based on target-specific real-time-quantitative PCR assays we compared the reduction of human DNA versus loss of bacterial DNA. Human DNA was monitored by targeting the β-2-microglobulin gene, while bacteria were monitored by targeting 16S rDNA (total bacteria and Porphyromonas gingivalis) or the glycosyltransferase gene (Streptococcus mutans).We found that in most cases at least 90% of human DNA could successfully be removed, with complete removal in eight of 16 cases using MolYsis, and two (of 16) cases using Pureprove. Conversely, detection of bacterial DNA was possible in all cases with a recovery rate generally ranging from 35% to 50%. In conclusion, both strategies have the potential to reduce background interference from the host DNA which may be of remarkable value for nucleic-acid based microbial diagnostic systems.  相似文献   

3.
DNA Extraction from Activated Sludges   总被引:16,自引:0,他引:16  
To optimize the cell lysis step for DNA extraction from activated sludge samples, two floc dispersion methods (sonication versus stirring with a cation exchange resin), and three cell lysis treatments (lysozyme + SDS, sonication in a water bath, and thermal shock) were tested. For dispersion, stirring with cation exchange resin was more efficient than sonication. The cell lysis procedures were applied in two sequences, and DNA was quantified after each cell lysis treatment. Lysozyme + SDS was the most effective step in the cell lysis procedures. The cell lysis treatment sequences giving the highest DNA yields were not the same for all the sludges. The differences in sludge microbial compositions and floc structures required specifically adapted cell lysis protocols. The proposed protocols were highly efficient for DNA extraction, yielding about 50 mg DNA g−1 volatile suspended solids, and allowed PCR amplification of 16S rDNA. Received: 26 September 1998 / Accepted: 13 February 1999  相似文献   

4.
Reindeer (Rangifer tarandus tarandus) may include large proportions of lichens in their winter diet. These dietary lichens are rich in phenolic secondary compounds, the most well-known being the antimicrobial usnic acid. Previous studies have shown that reindeer host rumen bacteria resistant to usnic acid and that usnic acid is quickly detoxified in their rumen. In the present study, reindeer (n = 3) were sampled before, during, and after usnic acid supplementation to determine the effect on their rumen microbial ecology. Ad libitum intake of usnic acid averaged up to 278 mg/kg body mass. Population densities of rumen bacteria and methanogenic archaea determined by real-time PCR, ranged from 1.36 × 109 to 11.8 × 109 and 9.0 × 105 to 1.35 × 108 cells/g wet weight, respectively, and the two populations did not change significantly during usnic acid supplementation (repeated measures ANOVA) or vary significantly between the rumen liquid and particle fraction (paired t test). Rumen bacterial community structure determined by denaturing gradient gel electrophoresis did not change in response to intake of usnic acid. Firmicutes (38.7 %) and Bacteriodetes (27.4 %) were prevalent among the 16S rRNA gene sequences (n = 62) from the DGGE gels, but representatives of the phyla Verrucomicrobia (14.5 %) and Proteobacteria (1.6 %) were also detected. Rapid detoxification of the usnic acid or resistance to usnic acid may explain why the diversity of the dominant bacterial populations and the bacterial density in the reindeer rumen does not change during usnic acid supplementation.  相似文献   

5.
Polymerase chain reaction (PCR) detection of microorganism in faecal specimens is hampered by poor recovery of DNA and by the presence of PCR inhibitors. In this paper, we describe a new modified method for extracting PCR-quality microbial community DNA from pig faecal samples, which combines the pretreatment with polyformaldehyde, and subsequent DNA lysis in the presence of CTAB, salt, PVP, and β-mercaptoethanol, followed by isolation of nucleic acids using chloroform (no phenol) based protocol. The method resulted in a 1.3- to 11-fold increase in DNA yield when compared to four other widely used methods. Genomic DNA extracted from all five methods was assessed by both agarose gel electrophoresis and polymerase chain reaction for amplification of 16S rDNA specific fragments. The results showed that the improved method represented a reproducible, simple, and rapid technique for routine DNA extraction from faecal specimens and was notably better than using the QIAamp® DNA Stool Mini Kit.  相似文献   

6.
7.
Abstract The establishment of microorganisms in the rumen is a critical step if rumen manipulation is to be accomplished by use of microbial inoculants. Microbial populations in the maturing rumen undergo successional changes and, while in a state of flux, provide a possible opportunity for the introduction of specific strains of bacteria. While the rumen of the young lamb was maturing, we measured changes in several microbial populations with 16S-rRNA specific oligonucleotides: Rumincoccus, Fibrobacter, eukaryotes, Gram-positive bacteria, the Bacteroides–Porphromonas–Prevotella group, and anaerobic rumen fungi. In this study we repeatedly dosed 15 lambs with approximately 3.4 × 108 to 0.8 × 109 Ruminococcus cells dose-1, twice a week, for 7 wk from 23 d to 63 d of age. Of the five Ruminococcus strains dosed (R. albus SY3 and AR67, and R. flavefaciens Y1, LP9155, and AR72) the most specific primers (based on 16S rDNA) were obtained for strain SY3. There was an increase in the eukaryotic population during dosing, and it was hypothesized that protozoal predation contributed to the disappearance of strain SY3. At the end of dosing PCR amplification showed that SY3 were approximately 109 cells ml-1, but decreased to below the detection limit of the PCR system (8.6 × 104 ml-1) within 28 d postdosing. These experiments showed that fibrolytic populations increased significantly (P < 0.1) above the controls during the dosing period and were elevated for several days postdosing. This suggests that dosing of highly fibrolytic bacteria makes more of the fiber available to other organisms able to degrade fiber, and in so doing increases the overall fibrolytic activity of the rumen. Examination of the succession of gram-positive bacteria and the Bacteroides–Porphromonas–Prevotella group showed a decline in relative abundance as the lambs matured. Received: 13 April 1999; Accepted: 14 July 1999; Online Publication: 15 February 2000  相似文献   

8.
We describe an approach for determining the genetic composition of Bacteroides and Prevotella populations in gut contents based on selective amplification of 16S rRNA gene sequences (rDNA) followed by cleavage of the amplified material with restriction enzymes. The relative contributions of different ribotypes to total Bacteroides and Prevotella 16S rDNA are estimated after end labelling of one of the PCR primers, and the contribution of Bacteroides and Prevotella sequences to total eubacterial 16S rDNA is estimated by measuring the binding of oligonucleotide probes to amplified DNA. Bacteroides and Prevotella 16S rDNA accounted for between 12 and 62% of total eubacterial 16S rDNA in samples of ruminal contents from six sheep and a cow. Ribotypes 4, 5, 6, and 7, which include most cultivated rumen Prevotella strains, together accounted for between 20 and 86% of the total amplified Bacteroides and Prevotella rDNA in these samples. The most abundant Bacteroides or Prevotella ribotype in four animals, however, was ribotype 8, for which there is only one known cultured isolate, while ribotypes 1 and 2, which include many colonic Bacteroides spp., were the most abundant in two animals. This indicates that some abundant Bacteroides and Prevotella groups in the rumen are underrepresented among cultured rumen Prevotella isolates. The approach described here provides a rapid, convenient, and widely applicable method for comparing the genotypic composition of bacterial populations in gut samples.  相似文献   

9.
The study aimed at optimization of DNA isolation from blood of representatives of four microbial groups causing sepsis, i.e., Gram negative: Escherichia coli, Gram positive: Staphylococcus aureus, yeast: Candida albicans, and filamentous fungus: Aspergillus fumigatus. Additionally, the five commercial kits for microbial DNA isolation from the blood were tested. The developed procedure of DNA isolation consisted of three consecutive steps, i.e., mechanical disruption, chemical lysis, and thermal lysis. Afterward, DNA was isolated from the previously prepared samples (erythrocyte lysis) with the use of five commercial kits for DNA isolation. They were compared paying heed to detection limit, concentration, DNA purity, and heme concentration in samples. The isolation of DNA without preliminary erythrocyte lysis resulted in far higher heme concentration than when lysis was applied. In the variant with erythrocyte lysis, two of the commercial kits were most effective in purifying the DNA extract from heme. Designed procedure allowed obtaining microbial DNA from all four groups of pathogens under study in the amount sufficient to conduct the rtPCR reaction, which aimed at detecting them in the blood.  相似文献   

10.
Lactic acid bacteria populations of red wine samples from industrial fermentations, including two different vinification methods were studied. For this investigation, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) analysis was employed to supplement previous results that were obtained by culture-dependent methods. PCR-DGGE was aimed to study two targeted genes, 16S ribosomal DNA (rDNA) and rpoB, and the results were useful to evaluate the microbial populations in wine samples. Moreover, an improvement of a detection limit determined so far for DGGE analysis was obtained with the method described in this study, what made possible to identify lactic acid bacteria populations below 101 colony-forming unit/mL. The species Oenococcus oeni was the most frequently detected bacterium, but identifications close to species Oenococcus kitaharae and Lactococcus lactis that are not often found in wine were firstly identified in samples of this research. PCR-DGGE allowed to detect 9 out of 11 lactic acid bacteria species identified in this study (nine by PCR-16S rDNA/DGGE and four by PCR-rpoB/DGGE), while five species were detected using the modified de Man, Rogosa and Sharpe agar. Therefore, the two methods were demonstrated to be complementary. This finding suggests that analysis of the lactic acid bacteria population structure in wine should be carried out using both culture-dependent and culture-independent techniques with more than one primer pair.  相似文献   

11.
This paper analyses the research progress in the use of molecular techniques based on ribosomal RNA and DNA (rRNA/rDNA) for rumen microbial ecosystem since first literature by Stahl et al. (1988). Because rumen microbial populations could be under-estimated by adopting the traditional techniques such as roll-tube technique or most-probable-number estimates, modern molecular techniques based on 16S/18S rRNA/rDNA can be used to more accurately provide molecular characterization, microbe populations and classification scheme than traditional methods. Phylogenetic-group-specific probes can be used to hybridize samples for detecting and quantifying of rumen microbes. But, competitive-PCR and real-time PCR can more sensitively quantify rumen microbes than hybridization. Molecular fingerprinting techniques including both denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and restriction fragment length polymorphisms (RFLP) can used to explore diversity of bacteria, protozoa and fungi in the rumen ecosystem. By constructing clone libraries of 16S/18S rRNA/rDNA of rumen microbes, more new microbes can be discovered and identified. For fungi, internal transcribed spacers (ITS) of fungi are better than 18S rRNA/rDNA for discriminating operational taxonomic units. In conclusion, 16S/18S rRNA/rDNA procedures have been used with success in rumen microbes and are quickly gaining acceptance for studying rumen microbial ecosystem, and will become useful methods for rumen ecology research. However, molecular techniques based on 16S/18S rRNA/rDNA don't preclude classical and traditional microbiological techniques. It should used together to acquire accurate and satisfactory results.  相似文献   

12.
Extracting DNA from deep subsurface sediments is challenging given the complexity of sediments types, low biomasses, resting structures (spores, cysts) frequently encountered in deep sediments, and the potential presence of enzymatic inhibitors. Promising results for cell lysis efficiency were recently obtained by use of a cryogenic mill (Lipp et al., 2008). These findings encouraged us to devise a DNA extraction protocol using this tool. Thirteen procedures involving a combination of grinding in liquid nitrogen (for various durations and beating rates) with different chemical solutions (phenol, chloroform, SDS, sarkosyl, proteinase, GTC), or with use of DNA recovery kits (MagExtractor®) were compared. Effective DNA extraction was evaluated in terms of cell lysis efficiency, DNA extraction efficiency, DNA yield and determination of prokaryotic diversity. Results were compared to those obtained by standard protocols: the FastDNA®SPIN kit for soil and the Zhou protocol. For most sediment types grinding in a cryogenic mill at a low beating rate in combination with direct phenol-chloroform extraction resulted in much higher DNA yields than those obtained using classical procedures. In general (except for clay-rich sediments), this procedure provided high-quality crude extracts for direct downstream nested-PCR, from cell numbers as low as 1.1 × 106 cells/cm3. This procedure is simple, rapid, low-cost, and could be used with minor modifications for large-scale DNA extractions for a variety of experimental goals.  相似文献   

13.
Genetic variation among 20 populations of Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) in Thailand was investigated using single strand conformation polymorphism (SSCP) analysis of mitochondrial DNA sequences. From a total 641 individual parasitoids, seven distinct haplotypes containing a total of 32 polymorphic sites were observed from cytochrome oxidase subunit I (COI) sequences along with five distinct haplotypes containing a total 16 polymorphic sites from 16S rDNA sequences. Values obtained through pairwise FST comparisons and analysis of molecular variance (AMOVA) indicated significant genetic differentiation among D. longicaudata populations in Thailand. Congruent relationships showing separation of these populations into three groups were obtained from Neighbor joining and Bayesian phylogenetic tree analyses along with the use of haplotype networks. This SSCP analysis of populations of the D. longicaudata species complex is the first report using molecular population genetic methods to analyze the structure of this parasitoid species in Thailand. This may provide useful information for release of parasitoid strains to maximize their benefit in biological control programs.  相似文献   

14.
Aims: Understanding factors that influence the composition of microbial populations of the digestive system of dairy cattle will be key in regulating these populations to improve animal performance. Although rumen microbes are well studied, little is known of the dynamics and role of microbial populations in the small intestine of cows. Comparisons of fingerprints of microbial populations were used to investigate the effects of gastrointestinal (GI) segment and animal on community structure. Methods and Results: Samples from four lactating dairy cows with ruminal, duodenal and ileal cannulae were collected. Terminal‐restriction fragment length polymorphism (T‐RFLP) comparisons of small subunit rRNA genes revealed differences in microbial populations between GI segments (P < 0·05). No significant differences in either methanogen populations or microbial community profiles between animals were observed. Quantitative PCR was used to assay relative changes in methanogen numbers compared to procaryote rRNA gene numbers, and direct microscopic counts were used to enumerate total procaryote numbers of the duodenal and ileal samples. Conclusions: T‐RFLP comparisons illustrate significant changes in microbial diversity as digesta passes from one segment to another. Direct counts indicate that microbial numbers are reduced by eight orders of magnitude from the rumen, through the abomasum, and into the duodenum (from c. 1012 to c. 3·6 × 104 cells per ml). Quantitative PCR analyses of rRNA genes indicate that methanogens are present in the duodenum and ileum. Significance and Impact of the Study: The contribution of microbial populations of the small intestine to the nutrition and health of cattle is seldom addressed but warrants further investigation.  相似文献   

15.
This article describes two procedures for the purification of genomic DNA from small blood volumes of whole blood using DNAzol®BD. In the first procedure, DNA is isolated from 1–20 μL of whole blood using a fast and simple protocol that is appropriate for the simultaneous extraction of a large number of samples. The isolated DNA is suitable for gel electrophoresis and polymerase chain reaction (PCR). In the second procedure, cellulose blood cards containing approx 5 μL of dried blood are treated with DNAzol BD in order to retain DNA on the cellulose matrix while removing other cellular components. The blood card with DNA subsequently serves as template in PCR. The blood card processing and amplification procedures are performed in the same PCR tube without any centrifugation steps, making the combined procedures amenable for automated DNA preparation and amplification in a single tube.  相似文献   

16.
Molecular analysis of the 16S rDNA of the intestinal microbiota of whiteleg shrimp Litopenaeus vannamei was examined to investigate the effect of a Bacillus mix (Bacillus endophyticus YC3-b, Bacillus endophyticus C2-2, Bacillus tequilensisYC5-2) and the commercial probiotic (Alibio®) on intestinal bacterial communities and resistance to Vibrio infection. PCR and single strain conformation polymorphism (SSCP) analyses were then performed on DNA extracted directly from guts. Injection of shrimp with V. parahaemolyticus at 2.5 × 105 CFU g?1 per shrimp followed 168 h after inoculation with Bacillus mix or the Alibio probiotic or the positive control. Diversity analyses showed that the bacterial community resulting from the Bacillus mix had the highest diversity and evenness and the bacterial community of the control had the lowest diversity. The bacterial community treated with probiotics mainly consisted of α- and γ-proteobacteria, fusobacteria, sphingobacteria, and flavobacteria, while the control mainly consisted of α-proteobacteria and flavobacteria. Differences were grouped using principal component analyses of PCR-SSCP of the microbiota, according to the time of inoculation. In Vibrio parahaemolyticus-infected shrimp, the Bacillus mix (~33 %) induced a significant increase in survival compared to Alibio (~21 %) and the control (~9 %). We conclude that administration of the Bacillus mix induced modulation of the intestinal microbiota of L. vannamei and increased its resistance to V. parahaemolyticus.  相似文献   

17.
目的建立提取高质量的瘤胃微生物DNA的方法,为采用免培养技术研究山羊瘤胃微生物奠定基础。方法采集山羊瘤胃内容物,用SDS高盐法提取微生物总DNA,以通用引物扩增细菌和古细菌的16SrDNA。结果提取到的瘤胃微生物总DNA片段大于23kb,PCR能够扩增出细菌和古细菌的16SrDNA片段。结论用该提取方法得到的山羊瘤胃微生物总DNA能够满足后续实验的需要。  相似文献   

18.
A cultivation-independent technique for genetic profiling of PCR-amplified small-subunit rRNA genes (SSU rDNA) was chosen to characterize the diversity and succession of microbial communities during composting of an organic agricultural substrate. PCR amplifications were performed with DNA directly extracted from compost samples and with primers targeting either (i) the V4-V5 region of eubacterial 16S rRNA genes, (ii) the V3 region in the 16S rRNA genes of actinomycetes, or (iii) the V8-V9 region of fungal 18S rRNA genes. Homologous PCR products were converted to single-stranded DNA molecules by exonuclease digestion and were subsequently electrophoretically separated by their single-strand-conformation polymorphism (SSCP). Genetic profiles obtained by this technique showed a succession and increasing diversity of microbial populations with all primers. A total of 19 single products were isolated from the profiles by PCR reamplification and cloning. DNA sequencing of these molecular isolates showed similarities in the range of 92.3 to 100% to known gram-positive bacteria with a low or high G+C DNA content and to the SSU rDNA of gamma-Proteobacteria. The amplified 18S rRNA gene sequences were related to the respective gene regions of Candida krusei and Candida tropicalis. Specific molecular isolates could be attributed to different composting stages. The diversity of cultivated bacteria isolated from samples taken at the end of the composting process was low. A total of 290 isolates were related to only 6 different species. Two or three of these species were also detectable in the SSCP community profiles. Our study indicates that community SSCP profiles can be highly useful for the monitoring of bacterial diversity and community successions in a biotechnologically relevant process.  相似文献   

19.
PCR and real-time PCR primers for the 18S rRNA gene of rumen protozoa (Entodinium and Dasytricha spp.) were designed, and their specificities were tested against a range of rumen microbes and protozoal groups. External standards were prepared from DNA extracts of a rumen matrix containing known numbers and species of protozoa. The efficiency of PCR () was calculated following amplification of serial dilutions of each standard and was used to calculate the numbers of protozoa in each sample collected; serial dilutions of DNA were used similarly to calculate PCR efficiency. Species of Entodinium, the most prevalent of the rumen protozoa, were enumerated in rumen samples collected from 100 1-year-old merino wethers by microscopy and real-time PCR. Both the counts developed by the real-time PCR method and microscopic counts were accurate and repeatable, with a strong correlation between them (R2 = 0.8), particularly when the PCR efficiency was close to optimal (i.e., two copies per cycle). The advantages and disadvantages of each procedure are discussed. Entodinium represented on average 98% of the total protozoa, and populations within the same sheep were relatively stable, but greater variation occurred between different sheep (100 and 106 entodinia per gram of rumen contents). With this inherent variability, it was estimated that, to detect a statistically significant (P = 0.05) 20% change in Entodinium populations, 52 sheep per treatment group would be required.  相似文献   

20.
新疆泥火山细菌群落PCR-SSCP 分析   总被引:1,自引:0,他引:1  
采用单链构象多态性(SSCP)技术, 以16S rDNA 基因的V3 区为靶对象, 分析泥火山细菌多样性及其群落结构。通过对泥火山不同月份的不同深度土样DNA 提取后, 针对16S rDNA 进行PCR 扩增出236 bp 大小片段, 通过SSCP 电泳对泥火山细菌进行季节性多样性分析, 并对主要条带进行克隆分析。结果显示: 新疆泥火山细菌不同季节多态性明显, 而且这种多态性容易受生态和气候的影响; 假单胞菌属是泥火山土壤优势菌群, 在泥火山区土壤中广泛分布, 受生态和气候环境影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号