首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract The Rhodobacter capsulatus recA gene has been isolated and sequenced. Its deduced amino acid sequence showed the closest identity with the Rhodobacter sphaeroides RecA protein (91% identity). However, the promoter regions of both R. capsulatus and R. sphaeroides recA genes are only 64% similar. An Escherichia coli -like LexA binding site was not present in the upstream region of the R. capsulatus recA gene. Nevertheless, the R. capsulatus recA gene is inducible by DNA damage in both hetero- and phototrophically growing conditions. The R. capsulatus recA gene is poorly induced when inserted into the chromosome of R. sphaeroides , indicating that the recA gene of both bacteria possess different control sequences despite their phylogenetically close relationship.  相似文献   

3.
4.
5.
Oxygen is the major external factor affecting the expression of photosynthesis genes in facultatively photosynthetic bacteria. Many investigations over the last years mainly carried out on the closely related species Rhodobacter capsulatus and Rhodobacter sphaeroides have identified a number of proteins involved in the oxygen-regulated signal pathway, in which the RegB/RegA two component system plays a central role. While the RegB/RegA system activates photosynthesis genes under low oxygen tension other proteins like CrtJ and PPBP have a repressing function under high oxygen tension. Additional DNA binding proteins like the integration host factor can modulate the expression of photosynthesis genes. The role of alternative sigma factors in this signal pathway is still unclear.  相似文献   

6.
7.
8.
The pigment-binding proteins of Rhodobacter capsulatus are encoded by the polycistronic puf and puc operons. Both operons show higher expression under low oxygen tension than under high oxygen tension in the wild-type strain. The Tn5 mutant strain AH2 shows only low levels of puf and puc mRNA under high and low oxygen tension, indicating that it lacks a gene product required for stimulation of puf and puc gene expression under low oxygen tension. The formation of wild-type levels of photosynthetic complexes and normal oxygen regulation could be restored by the expression in trans of a 1.7 kb fragment of the R. capsulatus wild-type chromosome or by addition of 10μg I-1 vitamin B12 to the growth medium. An open reading frame of 798 nucleotides containing the Tn5 insertion was identified on the 1.7kb fragment. This open reading frame shows no homology to known genes and has a remarkably high GC content of 76%.  相似文献   

9.
10.
Expression of regulatory nif genes in Rhodobacter capsulatus.   总被引:15,自引:9,他引:6       下载免费PDF全文
Translational fusions of the Escherichia coli lacZ gene to Rhodobacter capsulatus nif genes were constructed in order to determine the regulatory circuit of nif gene expression in R. capsulatus, a free-living photosynthetic diazotroph. The expression of nifH, nifA (copies I and II), and nifR4 was measured in different regulatory mutant strains under different physiological conditions. The expression of nifH and nifR4 (the analog of ntrA in Klebsiella pneumoniae) depends on the NIFR1/R2 system (the analog of the ntr system in K. pneumoniae), on NIFA, and on NIFR4. The expression of both copies of nifA is regulated by the NIFR1/R2 system and is modulated by the N source of the medium under anaerobic photosynthetic growth conditions. In the presence of ammonia or oxygen, moderate expression of nifA was detectable, whereas nifH and nifR4 were not expressed under these conditions. The implications for the regulatory circuit of nif gene expression in R. capsulatus are discussed and compared with the situation in K. pneumoniae, another free-living diazotroph.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Three cosmids previously shown to contain information necessary for the expression of uptake of hydrogenase in Rhodobacter capsulatus were found to be present in a cluster on the chromosome. Earlier genetic experiments suggested the presence of at least six genes essential for hydrogenase activity that are now shown to be in a region of approximately 18 kb that includes the structural genes for the enzyme. A potential response regulator gene was sequenced as a part of the hup gene region.  相似文献   

19.
The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.  相似文献   

20.
Three open reading frames in the Rhodobacter capsulatus photosynthesis gene cluster, designated F0, F108, and F1025, were disrupted by site-directed mutagenesis. Mutants bearing insertions in these reading frames were defective in converting protoporphyrin IX to magnesium-protoporphyrin monomethyl ester, protochlorophyllide to chlorophyllide a, and magnesium-protoporphyrin monomethyl ester to protochlorophyllide, respectively. These results demonstrate that the genes examined most likely encode enzyme subunits that catalyze steps common to plant and bacterial tetrapyrrole photopigment biosynthetic pathways. The open reading frames were found to be part of a large 11-kilobase operon that encodes numerous genes involved in early steps of the bacteriochlorophyll a biosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号