首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cdc14 protein encodes a dual-specificity protein phosphatase which functions in late mitosis, and considerable genetic evidence suggests a role in DNA replication. We find that cdc14 mutants arrested in late mitosis maintain persistent levels of mitotic kinase activity, suggesting that Cdc14 controls inactivation of this kinase. Overexpression of Sic1, a cyclin-dependent protein kinase inhibitor, is able to suppress telophase mutants such as dbf2, cdc5 and cdc15, but not cdc14. It does, however, force cdc14-arrested cells into the next cell cycle, in which an apparently normal S phase occurs as judged by FACS and pulsed-field gel electrophoretic analysis. Furthermore, in a promoter shut-off experiment, cells lacking Cdc14 appear to carry out a normal S phase. Thus Cdc14 functions mainly in late mitosis and it has no essential role in S phase. Received: 9 January 1998 / Accepted: 22 January 1998  相似文献   

2.
Cdc14, a dual-specificity protein phosphatase, has been previously implicated in triggering exit from mitosis in the yeast Saccharomyces cerevisiae. Using immunofluorescence microscopy and immunogold labeling, we demonstrate that a functional HA-tagged version of the phosphatase Cdc14 localizes to the nucleolus. Moreover, Cdc14-HA co-localized with the nucleolar NOP2 and GAR1 proteins. By immunofluorescence, Cdc14-HA was found in the nucleolus during most of the mitotic cell cycle, except during anaphase-telophase when it redistributed along the mitotic spindle. While this work was in progress, the same pattern of Cdc14 localization was described by others (Visintin et al, Nature 398 (1999) 818). Constitutive overexpression of CDC14 was toxic and led to cell cycle arrest of cells, mainly in G1. This correlated with the appearance of abnormal nuclear structures. A genetic search for suppressors of the lethality associated with CDC14 overexpression identified YJL076W. Because overproduction of Yj1076w buffered the toxic effect of Cdc14 overproduction, this suggested that it might be a substrate of Cdc14. This has indeed been found to be the case by others who recently described Yj1076w/Netl as a nucleolar protein that physically associates with Cdc14 (Shou et al, Cell 97 (1999) 233). The present data confirm several recently uncovered aspects of the regulation of Cdc14 localization and activity and suggest that the level of expression of CDC14 influences the structural organization of the nucleolus.  相似文献   

3.
In Saccharomyces cerevisiae exit from mitosis requires the Cdc14 phosphatase to reverse CDK-mediated phosphorylation. Cdc14 is released from the nucleolus by the Cdc14 early anaphase release (FEAR) and mitotic exit network (MEN) pathways. In meiosis, the FEAR pathway is essential for exit from anaphase I. The MEN component Cdc15 is required for the formation of mature spores. To analyze the role of Cdc15 during sporulation, a conditional mutant in which CDC15 expression was controlled by the CLB2 promoter was used. Cdc15-depleted cells proceeded normally through the meiotic divisions but were unable to properly disassemble meiosis II spindles. The morphology of the prospore membrane was aberrant and failed to capture the nuclear lobes. Cdc15 was not required for Cdc14 release from the nucleoli, but it was essential to maintain Cdc14 released and for its nucleo-cytoplasmic transport. However, cells carrying a CDC14 allele with defects in nuclear export (Cdc14-DeltaNES) were able to disassemble the spindle and to complete spore formation, suggesting that the Cdc14 nuclear export defect was not the cause of the phenotypes observed in cdc15 mutants.  相似文献   

4.
The phosphatase Cdc14 is required for mitotic exit in budding yeast. Cdc14 promotes Cdk1 inactivation by targeting proteins that, when dephosphorylated, trigger degradation of mitotic cyclins and accumulation of the Cdk1 inhibitor, Sic1. Cdc14 is sequestered in the nucleolus during most of the cell cycle but is released into the nucleus and cytoplasm during anaphase. When Cdc14 is not properly sequestered in the nucleolus, expression of the S-phase cyclin Clb5 is required for viability, suggesting that the antagonizing activity of Clb5-dependent Cdk1 specifically is necessary when Cdc14 is delocalized. We show that delocalization of Cdc14 combined with loss of Clb5 causes defects in DNA replication. When Cdc14 is not sequestered, it efficiently dephosphorylates a subset of Cdk1 substrates including the replication factors, Sld2 and Dpb2. Mutations causing Cdc14 mislocalization interact genetically with mutations affecting the function of DNA polymerase epsilon and the S-phase checkpoint protein Mec1. Our findings suggest that Cdc14 is retained in the nucleolus to support a favorable kinase/phosphatase balance while cells are replicating their DNA, in addition to the established role of Cdc14 sequestration in coordinating nuclear segregation with mitotic exit.  相似文献   

5.
Previous comparisons of centromeric DNA sequences in laboratory strains of Saccharomyces cerevisiae have revealed conserved sequences within 120 base pairs (bp) which appear to be essential for centromere function. We wanted to find out whether centromeric DNA in Saccharomyces strains with different degrees of DNA sequence divergence carry the same conserved sequences or not. Bam HI DNA fragments from two S. cerevisiae strains and one Saccharomyces uvarum strain were cloned into a centromere selection vector and tested for centromere function in a S. cerevisiae laboratory strain. Fragments having centromere function were obtained at approximately equal frequencies from all three strains. Two of the S. uvarum centromeric DNAs and two of the S. cerevisiae centromeric DNAs were sequenced and shown to carry in a 120 bp region sequences essentially like those of centromeric DNA in S. cerevisiae laboratory strains. DNA hybridization to separated chromosomal DNAs revealed that the two newly determined S. cerevisiae centromeric DNA sequences belong to chromosomes V and XIII, respectively. On leave from: Department of Cell and Tumor Biology, Roswell Park Memorial Institute, Buffalo, NY 14263, USA; On leave from: The Biological Laboratories, University of Leiden, The Netherlands  相似文献   

6.
Akiyoshi B  Biggins S 《Genetics》2010,186(4):1487-1491
The budding yeast Cdc14 phosphatase reverses Cdk1 phosphorylation to promote mitotic exit. Although Cdc14 activity is thought to be restricted to anaphase, we found that dephosphorylation of the Dsn1 kinetochore protein in metaphase requires Cdc14. These data suggest that there is a nonnucleolar pool of active Cdc14 prior to anaphase.  相似文献   

7.
In the budding yeast Saccharomyces cerevisiae, the protein phosphatase Cdc14p orchestrates various events essential for mitotic exit. We have determined the X‐ray crystal structures at 1.85 Å resolution of the catalytic domain of Cdc14p in both the apo state, and as a complex with S160‐phosphorylated Swi6p peptide. Each asymmetric unit contains two Cdc14p chains arranged in an intimately associated homodimer, consistent with its oligomeric state in solution. The dimerization interface is located on the backside of the substrate‐binding cleft. Structure‐based mutational analyses indicate that the dimerization of Cdc14p is required for normal growth of yeast cells.  相似文献   

8.
We studied the replication of random genomic DNA fragments from Saccharomyces cerevisiae in a long-term assay in human cells. Plasmids carrying large yeast DNA fragments were able to replicate autonomously in human cells. Efficiency of replication of yeast DNA fragments was comparable to that of similarly sized human DNA fragments and better than that of bacterial DNA. This result suggests that yeast genomic DNA contains sequence information needed for replication in human cells. To examine whether DNA replication in human cells would initiate specifically at a yeast origin of replication, we monitored initiation on a plasmid containing the yeast 2-micron autonomously replicating sequence (ARS) in yeast and human cells. We found that while replication initiates at the 2-micron ARS in yeast, it does not preferentially initiate at the ARS in human cells. This result suggests that the sequences that direct site specific replication initiation in yeast do not function in the same way in human cells, which initiate replication at a broader range of sequences.by J.A. Huberman  相似文献   

9.
DNA replication in Escherichia coli mutants that lack protein HU.   总被引:7,自引:4,他引:7       下载免费PDF全文
T Ogawa  M Wada  Y Kano  F Imamoto    T Okazaki 《Journal of bacteriology》1989,171(10):5672-5679
  相似文献   

10.
The Saccharomyces cerevisiae Cdc6 protein is necessary for the formation of pre-replicative complexes that are required for firing DNA replication at origins at the beginning of S phase. Cdc6p protein levels oscillate during the cell cycle. In a normal cell cycle the presence of this protein is restricted to G1, partly because the CDC6 gene is transcribed only during G1 and partly because the Cdc6p protein is rapidly degraded at late G1/early S phase. We report here that the Cdc6p protein is degraded in a Cdc4-dependent manner, suggesting that phosphorylated Cdc6 is specifically recognized by the ubiquitin-mediated proteolysis machinery. Indeed, we have found that Cdc6 is ubiquitinated in vivo and degraded by a Cdc4-dependent mechanism. Our data, together with previous observations regarding Cdc6 stability, suggest that under physiological conditions budding yeast cells degrade ubiquitinated Cdc6 every cell cycle at the beginning of S phase.  相似文献   

11.
Initiation of DNA replication in eukaryotes is dependent on the activity of protein phosphatase 2A (PP2A), but specific phosphoprotein substrates pertinent to this requirement have not been identified. A novel regulatory subunit of PP2A, termed PR48, was identified by a yeast two-hybrid screen of a human placental cDNA library, using human Cdc6, an essential component of prereplicative complexes, as bait. PR48 binds specifically to an amino-terminal segment of Cdc6 and forms functional holoenzyme complexes with A and C subunits of PP2A. PR48 localizes to the nucleus of mammalian cells, and its forced overexpression perturbs cell cycle progression, causing a G(1) arrest. These results suggest that dephosphorylation of Cdc6 by PP2A, mediated by a specific interaction with PR48, is a regulatory event controlling initiation of DNA replication in mammalian cells.  相似文献   

12.
Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.  相似文献   

13.
Chatre L  Ricchetti M 《PloS one》2011,6(3):e17235
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.  相似文献   

14.
DNA复制是最基本的生命活动之一。DNA复制本身的错误及其过程控制的异常是细胞内基因组不稳定的主要来源,会导致细胞生长异常、衰老、癌变乃至死亡。为了保证基因组DNA能够精确且完整的复制,DNA复制受到严格的调控。在G1期,DNA复制解旋酶的核心组分Mcm2-7复合体被招募到复制起点,获得复制许可资格。进入S期后,在两个周期性蛋白激酶及多个支架蛋白的作用下,复制解旋酶的激活因子Cdc45和GINS复合体被招募至Mcm2-7,形成解旋酶全酶Cdc45-Mcm2-7-GINS (CMG)复合体。随后,众多复制相关蛋白在精准的时空控制下被招募至CMG平台并组装成复制机器,起始DNA双向复制。当相向而行的两个复制叉相遇,复制机器会从DNA链上解离下来,从而完成DNA复制。关于DNA复制过程的研究在近十年来取得了跨越式的突破。本文以酿酒酵母为例,围绕所有真核生物中都高度保守的DNA复制控制开关——CMG解旋酶,对真核生物DNA复制的最新进展进行综述。  相似文献   

15.
16.
Kumaran S  Kozlov AG  Lohman TM 《Biochemistry》2006,45(39):11958-11973
We have examined the single-stranded DNA (ssDNA) binding properties of the Saccharomyces cerevisiae replication protein A (scRPA) using fluorescence titrations, isothermal titration calorimetry, and sedimentation equilibrium to determine whether scRPA can bind to ssDNA in multiple binding modes. We measured the occluded site size for scRPA binding poly(dT), as well as the stoichiometry, equilibrium binding constants, and binding enthalpy of scRPA-(dT)L complexes as a function of the oligodeoxynucleotide length, L. Sedimentation equilibrium studies show that scRPA is a stable heterotrimer over the range of [NaCl] examined (0.02-1.5 M). However, the occluded site size, n, undergoes a salt-dependent transition between values of n = 18-20 nucleotides at low [NaCl] and values of n = 26-28 nucleotides at high [NaCl], with a transition midpoint near 0.36 M NaCl (25.0 degrees C, pH 8.1). Measurements of the stoichiometry of scRPA-(dT)L complexes also show a [NaCl]-dependent change in stoichiometry consistent with the observed change in the occluded site size. Measurements of the deltaH(obsd) for scRPA binding to (dT)L at 1.5 M NaCl yield a contact site size of 28 nucleotides, similar to the occluded site size determined at this [NaCl]. Altogether, these data support a model in which scRPA can bind to ssDNA in at least two binding modes, a low site size mode (n = 18 +/- 1 nucleotides), stabilized at low [NaCl], in which only three of its oligonucleotide/oligosaccharide binding folds (OB-folds) are used, and a higher site size mode (n = 27 +/- 1 nucleotides), stabilized at higher [NaCl], which uses four of its OB-folds. No evidence for highly cooperative binding of scRPA to ssDNA was found under any conditions examined. Thus, scRPA shows some behavior similar to that of the E. coli SSB homotetramer, which also shows binding mode transitions, but some significant differences also exist.  相似文献   

17.
Potential DNA replication accessory factors from the yeast Saccharomyces cerevisiae have previously been identified by their ability to bind to DNA polymerase alpha protein affinity matrices (J. Miles and T. Formosa, Proc. Natl. Acad. Sci. USA 89:1276-1280, 1992). We have now used genetic methods to characterize the gene encoding one of these DNA polymerase alpha-binding proteins (POB1) to determine whether it plays a role in DNA replication in vivo. We find that yeast cells lacking POB1 are viable but display a constellation of phenotypes indicating defective DNA metabolism. Populations of cells lacking POB1 accumulate abnormally high numbers of enlarged large-budded cells with a single nucleus at the neck of the bud. The average DNA content in a population of cells lacking POB1 is shifted toward the G2 value. These two phenotypes indicate that while the bulk of DNA replication is completed without POB1, mitosis is delayed. Deleting POB1 also causes elevated levels of both chromosome loss and genetic recombination, enhances the temperature sensitivity of cells with mutant DNA polymerase alpha genes, causes increased sensitivity to UV radiation in cells lacking a functional RAD9 checkpoint gene, and causes an increased probability of death in cells carrying a mutation in the MEC1 checkpoint gene. The sequence of the POB1 gene indicates that it is identical to the CTF4 (CHL15) gene identified previously in screens for mutations that diminish the fidelity of chromosome transmission. These phenotypes are consistent with defective DNA metabolism in cells lacking POB1 and strongly suggest that this DNA polymerase alpha-binding protein plays a role in accurately duplicating the genome in vivo.  相似文献   

18.
Previous studies have demonstrated that bent DNA is a conserved property of Saccharomyces cerevisiae autonomously replicating sequences (ARSs). Here we showed that bending elements are contained within ARS subdomains identified by others as replication enhancers. To provide a direct test for the function of this unusual structure, we analyzed the ARS activity of plasmids that contained synthetic bent DNA substituted for the natural bending element in yeast ARS1. The results demonstrated that deletion of the natural bending locus impaired ARS activity which was restored to a near wild-type level with synthetic bent DNA. Since the only obvious common features of the natural and synthetic bending elements are the sequence patterns that give rise to DNA bending, the results suggest that the bent structure per se is crucial for ARS function.  相似文献   

19.
Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.  相似文献   

20.
Glc7, the type1 serine/threonine phosphatase in the yeast Saccharomyces cerevisiae, is targeted by auxiliary subunits to numerous locations in the cell, where it regulates a range of physiological pathways. We show here that the accumulation of Glc7 at mating projections requires Afr1, a protein required for the formation of normal projections. AFR1-null mutants fail to target Glc7 to projections, and an Afr1 variant specifically defective in binding to Glc7 [Afr1(V546A F548A)] forms aberrant projections. The septin filaments in mating projections of AFR1 mutants initiate normally but then rearrange asymmetrically as the projection develops, suggesting that the Afr1-Glc7 holoenzyme may regulate the maintenance of septin complexes during mating. These results demonstrate a previously unknown role for Afr1 in targeting Glc7 to mating projections and in regulating the septin architecture during mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号