首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fission yeast plc1 + gene encodes phosphoinositide-specific phospholipase C. The two- hybrid interaction assay with plexA-plc1 + as a bait revealed that Plc1p interacted with the 14-3-3 proteins Rad24p and Rad25p. Formation of a complex containing Plc1p and Rad24p in vivo was confirmed by an immunological method. As predicted from the fact that rad24 null mutant cells are hypersensitive to UV irradiation, plc1 null mutant cells were almost as sensitive to UV irradiation as rad24 null mutant cells. In addition, deletion of rad24 in the plc1 null mutant cells did not enhance the UV sensitivity, indicating that plc1 + and rad24 + belong to the same epistasis group with respect to UV sensitivity. Whereas Rad24p has been reported to be involved in the DNA damage checkpoint pathway, the delay to mitosis after UV irradiation was not defective either in rad24 null mutant cells or in plc1 null mutant cells in our analysis. Thus, Plc1p is responsible for resistance to UV irradiation, but not for the DNA damage checkpoint pathway, in cooperation with 14-3-3 proteins. Received: 10 July 1997 / Accepted: 15 December 1997  相似文献   

2.
3.
Twenty-eight site-directed mutations were introduced into the fission yeast gene (pcn1 +) that encodes proliferating cell nuclear antigen (PCNA) and their in vivo effects analyzed in a strain with a null pcn1 background. Mutants defective in enhancing processivity of DNA polymerase δ have previously been identified. In this study, we assessed all of the mutants for their sensitivities to temperature, hydroxyurea, UV irradiation and methyl methanesulfonate (MMS), and specific mutants were also tested for sensitivity to γ irradiation. One cold-sensitive allele, pcn1-3, was characterized in detail. This mutant had a recessive cold-sensitive cdc phenotype and showed sensitivity to hydroxyurea, UV, and γ irradiation. At the non-permissive temperature pcn1-3 protein was able to form homotrimers in solution and showed increased stimulation of both synthetic activity and processivity of DNA polymerase δ relative to the wild-type Pcn1+ protein. Epistasis analyses indicated that pcn1-3 is defective in the repair pathway involving rad2 + but not defective in the classical nucleotide excision repair pathway involving rad13 + . Furthermore, pcn1-3 is either synthetically or conditionally lethal in null checkpoint rad backgrounds and displays a mitotic catastrophe phenotype in these backgrounds. A model for how pcn1-3 defects may affect DNA repair and replication is presented.  相似文献   

4.
Daw  E Warwick  Morrison  John  Zhou  Xiaojun  Thomas  Duncan C 《BMC genetics》2003,4(1):1-11

Background

The Rad26/Rad3 complex in fission yeast detects genotoxic insults and initiates the cell cycle arrest and recovery activities of the DNA damage checkpoint. To investigate how the Rad26/Rad3 complex performs these functions, we constructed and characterized Rad26-GFP.

Results

Rad26-GFP localized to approximately six nuclear dots in cycling cells. Following treatment with a DNA damaging agent, Rad26-GFP localization changed. Damaged cells contained one or two bright Rad26-GFP spots, in addition to smaller, more numerous Rad26-GFP speckles. Genetic analyses demonstrated that these Rad26-GFP patterns (dots, spots and speckles) were unaffected by null mutations in other DNA damage checkpoint genes, including rad3 +. Data obtained with our Rad26.T12-GFP fusion protein correlate spots with cell cycle arrest activities and speckles with DNA repair activities. In addition, physiological experiments demonstrated that rad26Δ and rad3Δ alleles confer sensitivity to a microtubule-depolymerizing drug.

Conclusion

We have discovered three distinct Rad26-GFP cellular structures. Formation of these structures did not require other checkpoint proteins. These data demonstrate that Rad26 can respond to genotoxic insult in the absence of Rad3 and the other checkpoint Rad proteins.  相似文献   

5.
H Neecke  G Lucchini    M P Longhese 《The EMBO journal》1999,18(16):4485-4497
We studied the response of nucleotide excision repair (NER)-defective rad14Delta cells to UV irradiation in G(1) followed by release into the cell cycle. Only a subset of checkpoint proteins appears to mediate cell cycle arrest and regulate the timely activation of replication origins in the presence of unrepaired UV-induced lesions. In fact, Mec1 and Rad53, but not Rad9 and the Rad24 group of checkpoint proteins, are required to delay cell cycle progression in rad14Delta cells after UV damage in G(1). Consistently, Mec1-dependent Rad53 phosphorylation after UV irradiation takes place in rad14Delta cells also in the absence of Rad9, Rad17, Rad24, Mec3 and Ddc1, and correlates with entry into S phase. Two-dimensional gel analysis indicates that late replication origins are not fired in rad14Delta cells UV-irradiated in G(1) and released into the cell cycle, which instead initiate DNA replication from early origins and accumulate replication and recombination intermediates. Progression through S phase of UV-treated NER-deficient mec1 and rad53 mutants correlates with late origin firing, suggesting that unregulated DNA replication in the presence of irreparable UV-induced lesions might result from a failure to prevent initiation at late origins.  相似文献   

6.
Schizosaccharomyces pombe rad9 mutations can render cells sensitive to hydroxyurea (HU), gamma-rays and UV light and eliminate associated checkpoint controls. In vitro mutagenesis was performed on S.pombe rad9 and altered alleles were transplaced into the genome to ascertain the functional significance of five groups of evolutionarily conserved amino acids. Most targeted regions were changed to alanines, whereas rad9-S3 encodes a protein devoid of 22 amino acids normally present in yeast but absent from mammalian Rad9 proteins. We examined whether these rad9 alleles confer radiation and HU sensitivity and whether the sensitivities correlate with checkpoint control deficiencies. One rad9 mutant allele was fully active, whereas four others demonstrated partial loss of function. rad9-S1, which contains alterations in a BH3-like domain, conferred HU resistance but increased sensitivity to gamma-rays and UV light, without affecting checkpoint controls. rad9-S2 reduced gamma-ray sensitivity marginally, without altering other phenotypes. Two alleles, rad9-S4 and rad9-S5, reduced HU sensitivity, radiosensitivity and caused aberrant checkpoint function. HU-induced checkpoint control could not be uncoupled from drug resistance. These results establish unique as well as overlapping functional domains within Rad9p and provide evidence that requirements of the protein for promoting resistance to radiation and HU are not identical.  相似文献   

7.
The Ssp1 calmodulin kinase kinase (CaMKK) is necessary for stress-induced re-organization of the actin cytoskeleton and initiation of growth at the new cell end following division in Schizosaccharomyces pombe. In addition, it regulates AMP-activated kinase and functions in low glucose tolerance. ssp1 cells undergo mitotic delay at elevated temperatures and G2 arrest in the presence of additional stressors. Following hyperosmotic stress, Ssp1-GFP forms transient foci which accumulate at the cell membrane and form a band around the cell circumference, but not co-localizing with actin patches. Hyperosmolarity-induced localization to the cell membrane occurs concomitantly with a reduction of its interaction with the 14-3-3 protein Rad24, but not Rad25 which remains bound to Ssp1. The loss of rad24 in ssp1 cells reduces the severity of hyperosmotic stress response and relieves mitotic delay. Conversely, overexpression of rad24 exacerbates stress response and concomitant cell elongation. rad24 does not impair stress-induced localization of Ssp1 to the cell membrane, however this response is almost completely absent in cells overexpressing rad24.  相似文献   

8.
Genetic analysis has suggested that RAD17, RAD24, MEC3, and DDC1 play similar roles in the DNA damage checkpoint control in budding yeast. These genes are required for DNA damage-induced Rad53 phosphorylation and considered to function upstream of RAD53 in the DNA damage checkpoint pathway. Here we identify Mec3 as a protein that associates with Rad17 in a two-hybrid screen and demonstrate that Rad17 and Mec3 interact physically in vivo. The amino terminus of Rad17 is required for its interaction with Mec3, and the protein encoded by the rad17-1 allele, containing a missense mutation at the amino terminus, is defective for its interaction with Mec3 in vivo. Ddc1 interacts physically and cosediments with both Rad17 and Mec3, indicating that these three proteins form a complex. On the other hand, Rad24 is not found to associate with Rad17, Mec3, and Ddc1. DDC1 overexpression can partially suppress the phenotypes of the rad24Δ mutation: sensitivity to DNA damage, defect in the DNA damage checkpoint and decrease in DNA damage-induced phosphorylation of Rad53. Taken together, our results suggest that Rad17, Mec3, and Ddc1 form a complex which functions downstream of Rad24 in the DNA damage checkpoint pathway.  相似文献   

9.
Activation of Rad53p by DNA damage plays an essential role in DNA damage checkpoint pathways. Rad53p activation requires coupling of Rad53p to Mec1p through a “mediator” protein, Rad9p or Mrc1p. We sought to determine whether the mediator requirement could be circumvented by making fusion proteins between the Mec1 binding partner Ddc2p and Rad53p. Ddc2-Rad53p interacted with Mec1p and other Ddc2-Rad53p molecules under basal conditions and displayed an increased oligomerization upon DNA damage. Ddc2-Rad53p was activated in a Mec1p- and Tel1p-dependent manner upon DNA damage. Expression of Ddc2-Rad53p in Δrad9 or Δrad9Δmrc1 cells increased viability on plates containing the alkylating agent methyl methane sulfonate. Ddc2-Rad53p was activated at least partially by DNA damage in Δrad9Δmrc1 cells. In addition, expression of Ddc2-Rad53p in Δrad24Δrad17Δmec3 cells increased cell survival. These results reveal minimal requirements for function of a core checkpoint signaling system.  相似文献   

10.
DNA repair, checkpoint pathways and protection mechanisms against different types of perturbations are critical factors for the prevention of genomic instability. The aim of the present work was to analyze the roles of RAD17 and HDF1 gene products during the late stationary phase, in haploid and diploid yeast cells upon gamma irradiation. The checkpoint protein, Rad17, is a component of a PCNA-like complex—the Rad17/Mec3/Ddc1 clamp—acting as a damage sensor; this protein is also involved in double-strand break (DBS) repair in cycling cells. The HDF1 gene product is a key component of the non-homologous end-joining pathway (NHEJ). Diploid and haploid rad17Δ/rad17Δ, and hdf1Δ Saccharomyces cerevisiae mutant strains and corresponding isogenic wild types were used in the present study. Yeast cells were grown in standard liquid nutrient medium, and maintained at 30°C for 21 days in the stationary phase, without added nutrients. Cell samples were irradiated with 60Co γ rays at 5 Gy/s, 50 Gy ≤ Dabs ≤ 200 Gy. Thereafter, cells were incubated in PBS (liquid holding: LH, 0 ≤ t ≤ 24 h). DNA chromosomal analysis (by pulsed-field electrophoresis), and surviving fractions were determined as a function of absorbed doses, either immediately after irradiation or after LH. Our results demonstrated that the proteins Rad17, as well as Hdf1, play essential roles in DBS repair and survival after gamma irradiation in the late stationary phase and upon nutrient stress (LH after irradiation). In haploid cells, the main pathway is NHEJ. In the diploid state, the induction of LH recovery requires the function of Rad17. Results are compatible with the action of a network of DBS repair pathways expressed upon different ploidies, and different magnitudes of DNA damage.  相似文献   

11.
Following genotoxic insults, eukaryotic cells trigger a signal transduction cascade known as the DNA damage checkpoint response, which involves the loading onto DNA of an apical kinase and several downstream factors. Chromatin modifications play an important role in recruiting checkpoint proteins. In budding yeast, methylated H3-K79 is bound by the checkpoint factor Rad9. Loss of Dot1 prevents H3-K79 methylation, leading to a checkpoint defect in the G1 phase of the cell cycle and to a reduction of checkpoint activation in mitosis, suggesting that another pathway contributes to Rad9 recruitment in M phase. We found that the replication factor Dpb11 is the keystone of this second pathway. dot1Δ dpb11-1 mutant cells are sensitive to UV or Zeocin treatment and cannot activate Rad53 if irradiated in M phase. Our data suggest that Dpb11 is held in proximity to damaged DNA through an interaction with the phosphorylated 9-1-1 complex, leading to Mec1-dependent phosphorylation of Rad9. Dpb11 is also phosphorylated after DNA damage, and this modification is lost in a nonphosphorylatable ddc1-T602A mutant. Finally, we show that, in vivo, Dpb11 cooperates with Dot1 in promoting Rad9 phosphorylation but also contributes to the full activation of Mec1 kinase.  相似文献   

12.
Twenty-eight site-directed mutations were introduced into the fission yeast gene (pcn1 +) that encodes proliferating cell nuclear antigen (PCNA) and their in vivo effects analyzed in a strain with a null pcn1 background. Mutants defective in enhancing processivity of DNA polymerase δ have previously been identified. In this study, we assessed all of the mutants for their sensitivities to temperature, hydroxyurea, UV irradiation and methyl methanesulfonate (MMS), and specific mutants were also tested for sensitivity to γ irradiation. One cold-sensitive allele, pcn1-3, was characterized in detail. This mutant had a recessive cold-sensitive cdc phenotype and showed sensitivity to hydroxyurea, UV, and γ irradiation. At the non-permissive temperature pcn1-3 protein was able to form homotrimers in solution and showed increased stimulation of both synthetic activity and processivity of DNA polymerase δ relative to the wild-type Pcn1+ protein. Epistasis analyses indicated that pcn1-3 is defective in the repair pathway involving rad2 + but not defective in the classical nucleotide excision repair pathway involving rad13 + . Furthermore, pcn1-3 is either synthetically or conditionally lethal in null checkpoint rad backgrounds and displays a mitotic catastrophe phenotype in these backgrounds. A model for how pcn1-3 defects may affect DNA repair and replication is presented. Received: 5 July 1997 / Accepted: 10 October 1997  相似文献   

13.
We have cloned, sequenced and disrupted the checkpoint genes RAD17, RAD24 and MEC3 of Saccharomyces cerevisiae. Mec3p shows no strong similarity to other proteins currently in the database. Rad17p is similar to Rec1 from Ustilago maydis, a 3′ to 5′ DNA exonuclease/checkpoint protein, and the checkpoint protein Rad1p from Schizosaccharomyces pombe (as we previously reported). Rad24p shows sequence similarity to replication factor C (RFC) subunits, and the S. pombe Rad17p checkpoint protein, suggesting it has a role in DNA replication and/or repair. This hypothesis is supported by our genetic experiments which show that overexpression of RAD24 strongly reduces the growth rate of yeast strains that are defective in the DNA replication/repair proteins Rfc1p (cdc44), DNA polα (cdc17) and DNA polδ (cdc2) but has much weaker effects on cdc6, cdc9, cdc15 and CDC + strains. The idea that RAD24 overexpression induces DNA damage, perhaps by interfering with replication/repair complexes, is further supported by our observation that RAD24 overexpression increases mitotic chromosome recombination in CDC + strains. Although RAD17, RAD24 and MEC3 are not required for cell cycle arrest when S phase is inhibited by hydroxyurea (HU), they do contribute to the viability of yeast cells grown in the presence of HU, possibly because they are required for the repair of HU-induced DNA damage. In addition, all three are required for the rapid death of cdc13 rad9 mutants. All our data are consistent with models in which RAD17, RAD24 and MEC3 are coordinately required for the activity of one or more DNA repair pathways that link DNA damage to cell cycle arrest.  相似文献   

14.
Specific ataxia telangiectasia and Rad3-related (ATR) mutations confer higher frequencies of homologous recombination. The genetic requirements for hyper-recombination in ATR mutants are unknown. MEC1, the essential yeast ATR/ATM homolog, controls S and G2 checkpoints and the DNA damage-inducibility of genes after radiation exposure. Since the mec1-D (null) mutant is defective in both S and G2 checkpoints, we measured spontaneous and DNA damage-associated sister chromatid exchange (SCE), homolog (heteroallelic) recombination, and homology-directed translocations in the mec1-21 hypomorphic mutant, which is defective in the S phase checkpoint but retains some G2 checkpoint function. We observed a sixfold, tenfold and 30-fold higher rate of spontaneous SCE, heteroallelic recombination, and translocations, respectively, in mec1-21 mutants compared to wild type. The mec1-21 hyper-recombination was partially reduced in rad9, pds1, and chk1 mutants, and abolished in rad52 mutants, suggesting the hyper-recombination results from RAD52-dependent recombination pathway(s) that require G2 checkpoint functions. The HU and UV sensitivities of mec1-21 rad9 and mec1-21 rad52 were synergistically increased, compared to the single mutants, indicating that mec1-21, rad52 and rad9 mutants are defective in independent pathways for HU and UV resistance. G2-arrested mec1-21 rad9 cells exhibit more UV resistance than non-synchronized cells, indicating that one function of RAD9 in conferring UV resistance in mec1-21 is by triggering G2 arrest. We suggest that checkpoint genes that function in the RAD9-mediated pathway are required for either homologous recombination or DNA damage resistance in the S phase checkpoint mutant mec1-21.  相似文献   

15.
In Schizosaccharomyces pombe, rad24 and rad25 have been identified to be homologous to mammalian 14-3-3 genes and found to be involved in many cellular events, including checkpoint and meiosis. In the present study, we present evidences that Rad24 and Rad25 act as negative regulators of Byr2 (mitogen-activated protein kinase [MAPK] kinase kinase). Overexpression of rad24 or rad25 reduced mating and sporulation in homothallic wild-type cells. In contrast, the mating and sporulation efficiency of rad24- or rad25-null cells was higher than that of wild-type cells. Deletion of rad24 or rad25 increased sporulation efficiency in ras1-null diploid cells but not in byr2-, ste4-, byr1-, and spk1-null cells. Rad24 and Rad25 had no effect on the activity of constitutively active Byr1(S214DT218D). Rad24 and Rad25 bound to both the N-terminal and the C-terminal domains of Byr2 when these bacterially expressed proteins were examined. The formation of complexes in vivo between Byr2 and either Rad24 or Rad25 was also confirmed by immunocoprecipitation. Furthermore, we showed negative regulation of Byr2 by Rad25, by monitoring the mRNA level of mam2, which is regulated by both the Ras1/MAPK pathway and ste11, in various combinations of mutants. In addition, the cellular localization of Byr2 in living cells was observed by using fusion to green fluorescent protein. Byr2 was mainly localized in the cytoplasm during vegetative growth and then concentrated at the plasma membrane in response to nitrogen starvation. Deletion of rad24 or rad25 fastened the timing of Byr2 translocation. Our results are consistent with the hypothesis that one of the roles of 14-3-3 is to keep Byr2 in the cytoplasm and to affect the timing of Byr2 translocation in response to sexual developmental signal.  相似文献   

16.
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1Chk2/Rad53 through the Rad3ATR/Mec1-Mrc1Claspin pathway. Hsk1, the Cdc7 homolog of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not significantly in an mcm2 or polε mutant. These results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.Key words: Cdc7, Cdc45, checkpoint, DNA replication, Mrc1  相似文献   

17.
18.
In fission yeast two RAD52 homologs have been identified, rad22A+ and rad22B+. Two-hybrid experiments and GST pull-down assays revealed physical interaction between Rad22A and Rad22B, which is dependent on the N-terminal regions. Interaction with Rhp51 is dependent on the C-terminal parts of either protein. Both Rad22A and Rad22B also interact with RPA. The expression of rad22B+ in mitotically dividing cells is very low in comparison with rad22A+ but is strongly enhanced after induction of meiosis, in contrast to rad22A+. Rad22B mutant cells are not hypersensitive to DNA-damaging agents (X-rays, UV and cisplatin) and display normal levels of recombination. In these respects the Schizosaccharomyces pombe rad22B mutant resembles the weak phenotype of vertebrate cells deficient for RAD52. Mutation of rad22A+ leads to severe sensitivity to DNA-damaging agents and to defects in recombination. In a rad22Arad22B double mutant a further increase in sensitivity to DNA-damaging agents and additional mitotic recombination defects were observed. The data presented here indicate that Rad22A and Rad22B have overlapping roles in repair and recombination, although specialized functions for each protein cannot be excluded.  相似文献   

19.
We have isolated a murine cDNA, Mrad9, that is orthologous to the fission yeast rad9+ and human HRAD9 genes. Mrad9 encodes a 389 amino acid long, 42,032 Dalton protein that is 27% identical and 56% similar to Rad9p, and 82% identical and 88% similar to HRAD9, at the amino acid level. Expression of the Mrad9 cDNA in Schizosaccharomyces pombe rad9::ura4+ cells restores nearly wild-type levels of hydroxyurea resistance and early S phase checkpoint control to mutant fission yeast cell populations. However, UV resistance is only minimally restored, and mutant cells remain sensitive to gamma radiation. Mrad9 genomic DNA was isolated from a mouse 129/SvEv library. The Mrad9 gene was localized to a 15-kbp genomic DNA fragment, and contains 10 exons separated by 9 introns. Northern blot analysis indicates that the gene is expressed in many different tissues of the adult mouse, but the mRNA is most abundant in the heart and present at very low levels in the liver. These studies demonstrate the existence of a murine orthologue of the fission yeast rad9+ gene and underscore at least the partial evolutionary conservation of rad9+-dependent checkpoint control mechanisms. J. Cell. Physiol. 177:241–247, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Checkpoints are cellular surveillance and signaling pathways that regulate responses to DNA damage and perturbations of DNA replication. Here we show that high levels of sumoylated Rad52 are present in the mec1 sml1 and rad53 sml1 checkpoint mutants exposed to DNA-damaging agents such as methyl methanesulfonate (MMS) or the DNA replication inhibitor hydroxyurea (HU). The kinase-defective mutant rad53-K227A also showed high levels of Rad52 sumoylation. Elevated levels of Rad52 sumoylation occur in checkpoint mutants proceeding S phase being exposed DNA-damaging agent. Interestingly, chromatin immunoprecipitation (ChIP) on chip analyses revealed non-canonical chromosomal localization of Rad52 in the HU-treated rad53-K227A cells arrested in early S phase: Rad52 localization at dormant and early DNA replication origins. However, such unusual localization was not dependent on the sumoylation of Rad52. In addition, we also found that Rad52 could be highly sumoylated in the absence of Rad51. Double mutation of RAD51 and RAD53 exhibited the similar levels of Rad52 sumoylation to RAD53 single mutation. The significance and regulation mechanism of Rad52 sumoylation by checkpoint pathways will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号