共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural changes in the heme macrocycle and substituents caused by binding of Ca(2+) to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca(2+)-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca(2+) or Mg(2+). This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca(2+) binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca(2+) binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation. 相似文献
2.
Bacterial cytochrome c peroxidases contain an electron transferring (E) heme domain and a peroxidatic (P) heme domain. All but one of these enzymes are isolated in an inactive oxidized state and require reduction of the E heme by a small redox donor protein in order to activate the P heme. Here we present the structures of the inactive oxidized and active mixed valence enzyme from Paracoccus pantotrophus. Chain flexibility in the former, as expressed by the crystallographic temperature factors, is strikingly distributed in certain loop regions, and these coincide with the regions of conformational change that occur in forming the active mixed valence enzyme. On the basis of these changes, we postulate a series of events that occur to link the trigger of the electron entering the E heme from either pseudoazurin or cytochrome c(550) and the dissociation of a coordinating histidine at the P heme, which allows substrate access. 相似文献
3.
Pauleta SR Guerlesquin F Goodhew CF Devreese B Van Beeumen J Pereira AS Moura I Pettigrew GW 《Biochemistry》2004,43(35):11214-11225
The gene for pseudoazurin was isolated from Paracoccus pantotrophus LMD 52.44 and expressed in a heterologous system with a yield of 54.3 mg of pure protein per liter of culture. The gene and protein were shown to be identical to those from P. pantotrophus LMD 82.5. The extinction coefficient of the protein was re-evaluated and was found to be 3.00 mM(-1) cm(-1) at 590 nm. It was confirmed that the oxidized protein is in a weak monomer/dimer equilibrium that is ionic-strength-dependent. The pseudoazurin was shown to be a highly active electron donor to cytochrome c peroxidase, and activity showed an ionic strength dependence consistent with an electrostatic interaction. The pseudoazurin has a very large dipole moment, the vector of which is positioned at the putative electron-transfer site, His81, and is conserved in this position across a wide range of blue copper proteins. Binding of the peroxidase to pseudoazurin causes perturbation of a set of NMR resonances associated with residues on the His81 face, including a ring of lysine residues. These lysines are associated with acidic residues just back from the rim, the resonances of which are also affected by binding to the peroxidase. We propose that these acidic residues moderate the electrostatic influence of the lysines and so ensure that specific charge interactions do not form across the interface with the peroxidase. 相似文献
4.
Cytochrome cd1 nitrite reductase (cd1) from Paracoccus pantotrophus is a respiratory enzyme capable of using nitrite, hydroxylamine and oxygen as electron accepting substrates. Structural studies have shown that when the enzyme is reduced there is a change in the axial ligation of both hemes, which has been proposed to form part of the catalytic cycle. Here we report the use of a physiological electron donor, pseudoazurin, to investigate the relationship between heme ligation and catalysis. A combination of visible absorption and electron paramagnetic resonance spectroscopies reveals the formation of a catalytically competent state of oxidized cd1 with 'switched' axial ligands immediately after complete reoxidation of reduced cd1 with hydroxylamine. This activated conformer returns over 20 min at 25 degrees C to the state previously observed for oxidized 'as isolated' cd1, which is catalytically inactive towards the same substrates. 相似文献
5.
P. M. Paes de Sousa S. R. Pauleta D. Rodrigues M. L. Simões Gonçalves G. W. Pettigrew I. Moura J. J. G. Moura M. M. Correia dos Santos 《Journal of biological inorganic chemistry》2008,13(5):779-787
A comparative study of direct and mediated electrochemistry of metalloproteins in bulk and membrane-entrapped solutions is presented. This work reports the first electrochemical study of the electron transfer between a bacterial cytochrome c peroxidase and horse heart cytochrome c. The mediated catalysis of the peroxidase was analysed both using the membrane electrode configuration and with all proteins in solution. An apparent Michaelis constant of 66 +/- 4 and 42 +/- 5 microM was determined at pH 7.0 and 0 M NaCl for membrane and bulk solutions, respectively. The data revealed that maximum activity occurs at 50 mM NaCl, pH 7.0, with intermolecular rate constants of (4.4 +/- 0.5) x 10(6) and (1.0 +/- 0.5) x 10(6) M(-1) s(-1) for membrane-entrapped and bulk solutions, respectively. The influence of parameters such as pH or ionic strength on the mediated catalytic activity was analysed using this approach, drawing attention to the fact that careful analysis of the results is needed to ensure that no artefacts are introduced by the use of the membrane configuration and/or promoters, and therefore the dependence truly reflects the influence of these parameters on the (mediated) catalysis. From the pH dependence, a pK of 7.5 was estimated for the mediated enzymatic catalysis. 相似文献
6.
G W Pettigrew 《Biochimica et biophysica acta》1991,1058(1):25-27
The size, visible absorption spectra, nature of haem and haem content suggest that the cytochrome c peroxidase of Paracoccus denitrificans is related to that of Pseudomonas aeruginosa. However, the Paracoccus enzyme shows a preference for cytochrome c donors with a positively charged 'front surface' and in this respect resembles the cytochrome c peroxidase from Saccharomyces cerevisiae. Paracoccus cytochrome c-550 is the best electron donor tested and, in spite of an acidic isoelectric point, has a markedly asymmetric charge distribution with a strongly positive 'front face'. Mitochondrial cytochromes c have a much less pronounced charge asymmetry but are basic overall. This difference between cytochrome c-550 and mitochondrial cytochrome c may reflect subtle differences in their electron transport roles. A dendrogram of cytochrome c1 sequences shows that Rhodopseudomonas viridis is a closer relative of mitochondria than is Pa. denitrificans. Perhaps a mitochondrial-type cytochrome c peroxidase may be found in such an organism. 相似文献
7.
We have used microcalorimetry and analytical ultracentrifugation to test the model proposed in Pettigrew et al. [(1999) J. Biol. Chem. 274, 11383-11389] for the binding of small cytochromes to the cytochrome c peroxidase of Paracoccus denitrificans. Both methods reveal complexity in behavior due to the presence of a monomer/dimer equilibrium in the peroxidase. In the presence of either Ca(2+), or higher ionic strength, this equilibrium is shifted to the dimer. Experiments to study complex formation with redox partners were performed in the presence of Ca(2+) in order to simplify the equilibria that had to be considered. The results of isothermal titration calorimetry reveal that the enzyme can bind two molecules of horse cytochrome c with K(d) values of 0.8 microM and 2.5 microM (at 25 degrees C, pH 6.0, I = 0.026) but only one molecule of Paracoccus cytochrome c-550 with a K(d) of 2.8 microM, molar binding ratios confirmed by ultracentrifugation. For both horse cytochrome c and Paracoccus cytochrome c-550, the binding is endothermic and driven by a large entropy change, a pattern consistent with the expulsion of water molecules from the interface. For horse cytochrome c, the binding is weakened 3-fold at I = 0.046 M due to a smaller entropy change, and this is associated with an increase in enzyme turnover. In contrast, neither the binding of cytochrome c-550 nor its oxidation rate is affected by raising the ionic strength in this range. We propose that, at low ionic strength, horse cytochrome c is trapped in a nonproductive orientation on a broad capture surface of the peroxidase. 相似文献
8.
Cytochrome cd(1) (cd(1)NIR) from Paracoccus pantotrophus, which is both a nitrite reductase and an oxidase, was reduced by ascorbate plus hexaamineruthenium(III) chloride on a relatively slow time scale (hours required for complete reduction). Visible absorption spectroscopy showed that mixing of ascorbate-reduced enzyme with oxygen at pH = 6.0 resulted in the rapid oxidation of both types of heme center in the enzyme with a linear dependence on oxygen concentration. Subsequent changes on a longer time scale reflected the formation and decay of partially reduced oxygen species bound to the d(1) heme iron. Parallel freeze-quench experiments allowed the X-band electron paramagnetic resonance (EPR) spectrum of the enzyme to be recorded at various times after mixing with oxygen. On the same millisecond time scale that simultaneous oxidation of both heme centers was seen in the optical experiments, two new EPR signals were observed. Both of these are assigned to oxidized heme c and resemble signals from the cytochrome c domain of a "semi-apo" form of the enzyme for which histidine/methionine coordination was demonstrated spectroscopically. These observations suggests that structural changes take around the heme c center that lead to either histidine/methionine axial ligation or a different stereochemistry of bis-histidine axial ligation than that found in the as prepared enzyme. At this stage in the reaction no EPR signal could be ascribed to Fe(III) d(1) heme. Rather, a radical species, which is tentatively assigned to an amino acid radical proximal to the d(1) heme iron in the Fe(IV)-oxo state, was seen. The kinetics of decay of this radical species match the generation of a new form of the Fe(III) d(1) heme, probably representing an OH(-)-bound species. This sequence of events is interpreted in terms of a concerted two-electron reduction of oxygen to bound peroxide, which is immediately cleaved to yield water and an Fe(IV)-oxo species plus the radical. Two electrons from ascorbate are subsequently transferred to the d(1) heme active site via heme c to reduce both the radical and the Fe(IV)-oxo species to Fe(III)-OH(-) for completion of a catalytic cycle. 相似文献
9.
Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation 总被引:1,自引:0,他引:1
Dambe T Quentmeier A Rother D Friedrich C Scheidig AJ 《Journal of structural biology》2005,152(3):229-234
The sulfur-oxidizing enzyme system (Sox) of the chemotroph Paracoccus pantotrophus is composed of several proteins, which together oxidize hydrogen sulfide, sulfur, thiosulfate or sulfite and transfers the gained electrons to the respiratory chain. The hetero-dimeric cytochrome c complex SoxXA functions as heme enzyme and links covalently the sulfur substrate to the thiol of the cysteine-138 residue of the SoxY protein of the SoxYZ complex. Here, we report the crystal structure of the c-type cytochrome complex SoxXA. The structure could be solved by molecular replacement and refined to a resolution of 1.9A identifying the axial heme-iron coordination involving an unusual Cys-251 thiolate of heme2. Distance measurements between the three heme groups provide deeper insight into the electron transport inside SoxXA and merge in a better understanding of the initial step of the aerobic sulfur oxidation process in chemotrophic bacteria. 相似文献
10.
A 3-dimensional model of lignin peroxidase (LiP) was constructed based on its sequence homology with other peroxidases, particularly cytochrome c peroxidase, the only protein with a known crystal structure in the peroxidase family. The construction of initial conformations of insertions and deletions was assisted by secondary structure predictions, amphipathic helix predictions, and consideration of the specific protein environment. A succession of molecular dynamics simulations of these regions with surrounding residues as constraints were carried out to relax the bond lengths and angles. Full protein molecular dynamics simulations with explicit consideration of bound waters were performed to relax the geometry and to identify dynamically flexible regions of the successive models for further refinement. Among the important functionally relevant structural features predicted are: (i) four disulfide bonds are predicted to be formed between Cys3 and Cys15, Cys14 and Cys285, Cys34 and Cys120 and Cys249 and Cys317; (ii) a glycosylation site, Asn257, was located on the surface; (iii) Glu40 was predicted to form a salt bridge with Arg43 on the distal side of the heme and was considered as a possible origin for the pH dependence of compound I formation; and (iv) two candidate substrate binding sites with a cluster of surface aromatic residues and flexible backbones were found in the refined model, consistent with the nature of known substrates of LiP. Based on these predicted structural features of the model, further theoretical and experimental studies are proposed to continue to elucidate the structure and function of LiP. 相似文献
11.
van Wonderen JH Knight C Oganesyan VS George SJ Zumft WG Cheesman MR 《The Journal of biological chemistry》2007,282(38):28207-28215
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction. 相似文献
12.
Pettigrew GW Pauleta SR Goodhew CF Cooper A Nutley M Jumel K Harding SE Costa C Krippahl L Moura I Moura J 《Biochemistry》2003,42(41):11968-11981
According to the model proposed in previous papers [Pettigrew, G. W., Prazeres, S., Costa, C., Palma, N., Krippahl, L., and Moura, J. J. (1999) The structure of an electron-transfer complex containing a cytochrome c and a peroxidase, J. Biol. Chem. 274, 11383-11389; Pettigrew, G. W., Goodhew, C. F., Cooper, A., Nutley, M., Jumel, K., and Harding, S. E. (2003) Electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans, Biochemistry 42, 2046-2055], cytochrome c peroxidase of Paracoccus denitrificans can accommodate horse cytochrome c and Paracoccus cytochrome c(550) at different sites on its molecular surface. Here we use (1)H NMR spectroscopy, analytical ultracentrifugation, molecular docking simulation, and microcalorimetry to investigate whether these small cytochromes can be accommodated simultaneously in the formation of a ternary complex. The pattern of perturbation of heme methyl and methionine methyl resonances in binary and ternary solutions shows that a ternary complex can be formed, and this is confirmed by the increase in the sedimentation coefficient upon addition of horse cytochrome c to a solution in which cytochrome c(550) fully occupies its binding site on cytochrome c peroxidase. Docking experiments in which favored binary solutions of cytochrome c(550) bound to cytochrome c peroxidase act as targets for horse cytochrome c and the reciprocal experiments in which favored binary solutions of horse cytochrome c bound to cytochrome c peroxidase act as targets for cytochrome c(550) show that the enzyme can accommodate both cytochromes at the same time on adjacent sites. Microcalorimetric titrations are difficult to interpret but are consistent with a weakened binding of horse cytochrome c to a binary complex of cytochrome c peroxidase and cytochrome c(550) and binding of cytochrome c(550) to the cytochrome c peroxidase that is affected little by the presence of horse cytochrome c in the other site. The presence of a substantial capture surface for small cytochromes on the cytochrome c peroxidase has implications for rate enhancement mechanisms which ensure that the two electrons required for re-reduction of the enzyme after reaction with hydrogen peroxide are delivered efficiently. 相似文献
13.
P Pristovsek C Lücke B Reincke B Ludwig H Rüterjans 《European journal of biochemistry》2000,267(13):4205-4212
In order to determine the solution structure of Paracoccus denitrificans cytochrome c552 by NMR, we cloned and isotopically labeled a 10.5-kDa soluble fragment (100 residues) containing the functional domain of the 18.2-kDa membrane-bound protein. Using uniformly 15N-enriched samples of cytochrome c552 in the reduced state, a variety of two-dimensional and three-dimensional heteronuclear double-resonance NMR experiments was employed to achieve complete 1H and 15N assignments. A total of 1893 distance restraints was derived from homonuclear 2D-NOESY and heteronuclear 3D-NOESY spectra; 1486 meaningful restraints were used in the structure calculations. After restrained energy minimization a family of 20 structures was obtained with rmsd values of 0.56 +/- 0. 10 A and 1.09 +/- 0.09 A for the backbone and heavy atoms, respectively. The overall topology is similar to that seen in previously reported models of this class of proteins. The global fold consists of two long helices at the N-terminus and C-terminus and three shorter helices surrounding the heme moiety; the helices are connected by well-defined loops. Comparison with the X-ray structure shows some minor differences in the positions of the Trp57 and Phe65 side-chain rings as well as the heme propionate groups. 相似文献
14.
Sam KA Tolland JD Fairhurst SA Higham CW Lowe DJ Thorneley RN Allen JW Ferguson SJ 《Biochemical and biophysical research communications》2008,371(4):719-723
A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d1-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d1Fe(II)-NO and 45% cFe(II)d1Fe(II)-NO+. No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH. 相似文献
15.
The crystal structure of Paracoccus (formerly Micrococcus) denitrificans cytochrome c550 has been solved by x-ray diffraction to a resolution of 2.45 A. In both amino acid sequence and molecular structure it is evolutionarily homologous with mitochondrial cytochrome c from eukaryotes and photosynthetic cytochrome c2 from purple non-sulfur bacteria. All of these cytochromes c have the same basic folding pattern, with surface insertions of extra amino acids in c550. Various strains of c2 have all, some, or none of the extra insertions observed in c550. The hydrophobic heme environment, position of aromatic rings, and structure and environment of the heme crevice, are virtually identical in cytochromes c55o, c, and c2. Radical changes observed at all regions on the molecular surface except the heme crevice argue for the importance of the crevice and the exposed edge of the heme in the transfer of electrons to and from the cytochrome molecule. 相似文献
16.
The crystal structure of cytochrome c peroxidase 总被引:6,自引:0,他引:6
T L Poulos S T Freer R A Alden S L Edwards U Skogland K Takio B Eriksson N Xuong T Yonetani J Kraut 《The Journal of biological chemistry》1980,255(2):575-580
17.
The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely. 相似文献
18.
Turnover of cytochrome c oxidase from Paracoccus denitrificans 总被引:2,自引:0,他引:2
The heme aa3 type cytochrome oxidase from Paracoccus denitrificans incorporated into vesicles with phospholipid reacts during turnover much as the oxidase from mitochondria does. The spectrophotometric changes observed at various wavelengths are closely similar, and the rate is about one-half of that for beef heart oxidase under the same conditions. The rate of appearance of oxidized cytochrome c on initiation of the reaction is also similar and depends on the previous treatment of the oxidase as described by Antonini, E., Brunori, M., Colosimo, A., Greenwood, C. and Wilson, M. T. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3128-3132. In terms of their model the resting Paracoccus enzyme is converted to the pulsed form during turnover. The effect is observed with both cytochrome c and hexamine ruthenium as reductants. With the latter a 60-fold increase in rate is observed. 相似文献
19.
Biogenesis of c-type cytochromes in Escherichia coli involves a number of membrane proteins (CcmA-H), which are required for the transfer of heme to the periplasmically located apocytochrome c. The pathway includes (i) covalent, transient binding of heme to the periplasmic domain of the heme chaperone CcmE; (ii) the subsequent release of heme; and (iii) transfer and covalent attachment of heme to apocytochrome c. Here, we report that CcmF is a key player in the late steps of cytochrome c maturation. We demonstrate that the conserved histidines His-173, His-261, His-303, and His-491 and the tryptophan-rich signature motif of the CcmF protein family are functionally required. Co-immunoprecipitation experiments revealed that CcmF interacts directly with the heme donor CcmE and with CcmH but not with apocytochrome c. We propose that CcmFH forms a bacterial heme lyase complex for the transfer of heme from CcmE to apocytochrome c. 相似文献
20.
Immoos CE Bhaskar B Cohen MS Barrows TP Farmer PJ Poulos TL 《Journal of inorganic biochemistry》2002,91(4):635-643
The effect of heme ring oxygenation on enzyme structure and function has been examined in a reconstituted cytochrome c peroxidase. Oxochlorin derivatives were formed by OsO(4) treatment of mesoporphyrin followed by acid-catalyzed pinacol rearrangement. The northern oxochlorin isomers were isolated by chromatography, and the regio-isomers assignments determined by 2D COSY and NOE 1H NMR. The major isomer, 4-mesoporphyrinone (Mp), was metallated with FeCl(2) and reconstituted into cytochrome c peroxidase (CcP) forming a hybrid green protein, MpCcP. The heme-altered enzyme has 99% wild-type peroxidase activity with cytochrome c. EPR spectroscopy of MpCcP intermediate compound I verifies the formation of the Trp(191) radical similar to wild-type CcP in the reaction cycle. Peroxidase activity with small molecules is varied: guaiacol turnover increases approximately five-fold while that with ferrocyanide is approximately 85% of native. The electron-withdrawing oxo-substitutents on the cofactor cause a approximately 60-mV increase in Fe(III)/Fe(II) reduction potential. The present investigation represents the first structural characterization of an oxochlorin protein with X-ray intensity data collected to 1.70 A. Although a mixture of R- and S-mesopone isomers of the FeMP cofactor was used during heme incorporation into the apo-protein, only the S-isomer is found in the crystallized protein. 相似文献