首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Luminescent lanthanide complexes consisting of a lanthanide-binding chelate and organic-based antenna molecule have unusual emission properties, including millisecond excited state lifetimes and sharply spiked spectra, compared to standard organic fluorophores. We have previously used carbostyril (cs124, 7-amino-4-methyl-2(1H)-quinolinone) as an antenna molecule (Li and Selvin, J. Am. Chem. Soc., 1995) attached to a polyaminocarboxylate chelate such as DTPA. Here, we report the chelate syntheses of DTPA conjugated with cs124 derivatives substituted on the 1-, 3-, 4-, 5-, 6-, and 8-position. Among them, the DTPA chelate of cs124-6-SO(3)H has similar lifetime and brightness for both Tb(3+) and Eu(3+) compared to the corresponding DTPA-cs124 complexes, yet it is significantly more soluble in water. The Tb(3+) complex of DTPA-cs124-8-CH(3) has significantly longer lifetime compared to DTPA-cs124 (1.74 vs 1.5 ms), indicating higher lanthanide quantum yield resulting from the elimination of back emission energy transfer from Tb(3+) to the antenna molecule. Thiol-reactive forms of chelates were made for coupling to proteins. These lanthanide complexes are anticipated to be useful in a variety of fluorescence-based bioassays.  相似文献   

2.
A synthesis strategy for the on-resin assembly of luminescent lanthanide chelates from commercially available compounds was developed. Advantages of the approach include the absence of spacers between the metal ion and the attachment site, and the compatibility with typical chemical protein synthesis protection schemes. Methoxycoumarin-labeled lysine and tris(tert-butyl)-DOTA were consecutively coupled with high efficiency to a free amino group in otherwise fully protected peptide segments using standard peptide synthesis methods. Addition of stoichiometric amounts of Tb(3+) to the modified, cleaved, and purified peptides yielded the desired lanthanide chelate. Incorporation of this label into a chemically synthesized, full-length mechanosensitive channel of large conductance (MscL) of E. coli and subsequent reconstitution into vesicles resulted in a functional mechanosensitive channel of comparable conductance to the wild-type channel. However, this channel required increased suction to gate. Excitation of the antenna molecule methoxycoumarin at 336 nm resulted in an emission spectrum typical for Tb(3+) and a luminescence lifetime of 0.67 ms. The location of the probe close to the backbone of this protein may provide precise information about conformational changes during channel opening from LRET studies.  相似文献   

3.
稀土近红外发光材料具有独特的光物理性质,如发光谱带窄、较大的Stock位移、荧光寿命长可达毫秒级等,在医学诊断和成像、免疫分析等热门领域具有重大的应用前景。但由于跃迁选择定则,稀土离子本身的吸收系数较小,需要用特定的生色团对其进行敏化,以增强其发光性能。在众多生色团中,卟啉化合物由于其激发态能级与近红外发光的稀土离子能级较为匹配,可以较好的敏化稀土离子,获得较高的近红外发光效率,因此,近年来受到了极大的关注。本文总结了近年来近红外发光卟啉稀土配合物在生命科学领域中的应用研究进展,并对其发展前景进行了展望。  相似文献   

4.
Labeling proteins with long-lifetime emitting lanthanide (III) chelate reporters enables sensitive, time-resolved luminescence bioaffinity assays. Heterodimers of trimethoprim (TMP) covalently linked to various cs124-sensitized, polyaminocarboxylate chelates stably retain lanthanide ions and exhibit quantum yields of europium emission up to 20% in water. A time-resolved, luminescence resonance energy transfer (LRET) assay showed that TMP-polyaminocarboxylates bind to Escherichia coli dihydrofolate reductase (eDHFR) fusion proteins with nanomolar affinity in purified solutions and in bacterial lysates. The ability to selectively impart terbium or europium luminescence to fusion proteins in complex physiological mixtures bypasses the need for specific antibodies and simplifies sample preparation.  相似文献   

5.
Simple synthesis of luminescent europium(III) and terbium(III) chelates tethered to a maleimido function (7, 8) is described. The method is based on the following: (i) synthesis of protected ligands tethered to a maleimido function and their purification on silica gel; (ii) deprotection by acidolysis; (iii) conversion of the deprotected ligands to the corresponding lanthanide(III) chelates by passing them through a column of strong cation exchange resin loaded with the appropriate lanthanide(III) ions. According to this procedure, large quantities of mercapto-selective biomolecule-labeling reactants of high purity can be prepared.  相似文献   

6.
A new class of antenna chromophores so called ‘tetrazolates’ have not been explored much for lanthanide luminescencent complexes. However, we have already published several articles considering pyridineoxide tetrazolates as sensitizer with lanthanide ions. Although this class of antenna attracted much less attention because of its poor photoluminescence quantum yields (tris‐pyridineoxide tetrazolate europium complex = 13% in solution) we tried and successfully achieved to improve the photoluminescence quantum yields for this particular antenna molecule by replacing coordinated water from the inner coordination sphere of europium ion by introducing phosphine oxides as additional chromophore. In the present article the two bis‐phosphine oxides attach two molecules of tris‐pyridineoxide tetrazolate europium(III) complex which leads to the improvement of the overall molar absorption coefficients as well as photo‐physical properties of the complexes. We found more than two‐fold increase (31% in solution) in photoluminescence quantum yield with one of the coordinated phosphine oxides comparing with that of tris‐pyridineoxide tetrazolate europium(III) complex.  相似文献   

7.
Synthesis of a building block that allows introduction of photoluminescent europium(III) and samarium(III) chelates to synthetic oligopeptides on solid phase using standard Fmoc chemistry is described. Upon completion of the oligopeptide synthesis, these conjugates were converted to the corresponding lanthanide(III) chelates by treatment with appropriate lanthanide(III) salt. Also synthesis of a new terpyridine-based europium(III) chelate designed for solution phase protein labeling is demonstrated.  相似文献   

8.
Luminescent lanthanide complexes have unusual spectroscopic characteristics, including millisecond excited-state lifetime and sharply spiked emission spectra. These characteristics make them valuable alternatives to conventional organic fluorescent probes in detection applications and for measuring nanometer-scale conformational changes in biomolecules via resonance energy transfer. Our group has previously reported the syntheses and application of various luminescence complexes that have polyaminocarboxylate chelates coupled to a carbostyril antenna and thiol or amine-reactive groups. Here we report the syntheses of new thiol-reactive forms of DTPA-cs124 chelates, including two iodoacetamide forms (phenylalanine-iodoacetamide and ethylenediamine iodoacetamide) and two methane-thio-sulfonate forms (ethylmethanethiosulfonate and carboxyethylmethanethiosulfonate). In addition, we have developed an improved synthesis of a previously reported maleimide form.  相似文献   

9.
We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible‐light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT‐IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401–460 nm), the complexes show characteristic visible (Sm3+) as well as near‐infrared (Sm3+, Nd3+, Yb3+, Er3+, Tm3+, Pr3+) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near‐infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The oncogenic E7 proteins of human papilloma virus (HPV 16) and of cottontail rabbit papilloma virus (CRPV) have been purified from an expression system in Escherichia coli. The proteins as purified from E. coli contain one tightly bound Zn(II) ion per molecule. The metal site shows facile exchange with either Cd(II) or Cu(I). The HPV 16 E7 maximally bound one Cd(II) or two Cu(I) ions, while the CRPV E7 bound two Cd(II) or three Cu(I) ions. The Cd(II) and Cu(I) E7 molecules exhibited optical transitions in the ultraviolet suggestive of metal:thiolate coordination. E7 proteins from HPV 16 and CRPV contain 7 and 8 cysteines/molecule, respectively. Reaction of the E7 proteins with the sulfhydryl reagent, dithiodipyridine, revealed that all the cysteinyl sulfurs are present in the reduced thiol state. Cu(I)-E7 molecules are luminescent with maximal emission at 570 nm. The observed emission at room temperature is indicative of metal coordination within a compact protein environment shielded from solvent interactions. The emission maxima occurs at the same wavelength (570 nm) as Cu(I)-cysteinyl sulfur clusters in Cu(I)-metallothioneins. The single Zn(II) atom in each protein can be removed from E7 in the presence of EDTA. The resulting apoE7 molecules remain soluble and can be partially reconstituted with Cd(II) to regain the ultraviolet charge transfer transitions.  相似文献   

11.
The combination of temporal and spectral resolution in fluorescence microscopy based on long-lived luminescent labels offers a dramatic increase in contrast and probe selectivity due to the suppression of scattered light and short-lived autofluorescence. We describe various configurations of a fluorescence microscope integrating spectral and microsecond temporal resolution with conventional digital imaging based on CCD cameras. The high-power, broad spectral distribution and microsecond time resolution provided by microsecond xenon flashlamps offers increased luminosity with recently developed fluorophores with lifetimes in the submicrosecond to microsecond range. On the detection side, a gated microchannel plate intensifier provides the required time resolution and amplification of the signal. Spectral resolution is achieved with a dual grating stigmatic spectrograph and has been applied to the analysis of luminescent markers of cytochemical specimens in situ and of very small volume elements in microchambers. The additional introduction of polarization optics enables the determination of emission polarization; this parameter reflects molecular orientation and rotational mobility and, consequently, the nature of the microenvironment. The dual spectral and temporal resolution modes of acquisition complemented by a posteriori image analysis gated on the spatial, spectral, and temporal dimensions lead to a very flexible and versatile tool. We have used a newly developed lanthanide chelate, Eu-DTPA-cs124, to demonstrate these capabilities. Such compounds are good labels for time-resolved imaging microscopy and for the estimation of molecular proximity in the microscope by fluorescence (luminescence) resonance energy transfer and of molecular rotation via fluorescence depolarization. We describe the spectral distribution, polarization states, and excited-state lifetimes of the lanthanide chelate crystals imaged in the microscope.  相似文献   

12.
Novel chelate-induced magnetic alignment of biological membranes.   总被引:4,自引:2,他引:2       下载免费PDF全文
A phospholipid chelate complexed with ytterbium (DMPE-DTPA:Yb3+) is shown to be readily incorporated into a model membrane system, which may then be aligned in a magnetic field such that the average bilayer normal lies along the field. This so-called positively ordered smectic phase, whose lipids consist of less than 1% DMPE-DTPA:Yb3+, is ideally suited to structural studies of membrane proteins by solid-state NMR, low-angle diffraction, and spectroscopic techniques that require oriented samples. The chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine diethylenetriaminepentaacetic acid, which strongly binds the lanthanide ions and serves to orient the membrane in a magnetic field, prevents direct lanthanide-protein interactions and significantly reduces paramagnetic shifts and line broadening. Similar low-spin lanthanide chelates may have applications in field-ordered solution NMR studies of water-soluble proteins and in the design of new magnetically aligned liquid crystalline phases.  相似文献   

13.
Helical complexes formed between fd DNA and reductively methylated fd gene 5 protein were indistinguishable by electron microscopy from complexes formed with the nonmethylated protein. 13C NMR spectroscopy of 13C-enriched N epsilon, N epsilon-dimethyllsyl residues of the protein showed that three of these residues (Lys-24, Lys-46, and Lys-69) were selectively perturbed by binding of the oligomer d(pA)7. These were the same lysyl residues that we previously found to be most protected from methylation by binding of the protein to poly[r(U)] [Dick, L. R., Sherry, A. D., Newkirk, M. M., & Gray D. M. (1988) J. Biol. Chem. 263, 18864-18872]. Thus, these lysines are probably directly involved in the nucleic acid binding function of the protein. Negatively charged chelates of lanthanide ions were used to perturb the 13C NMR resonances of labeled lysyl and amino-terminal residues of the gene 5 protein. The terbium chelate was found to bind tightly (Ka approximately 10(5) M-1) to the protein with a stoichiometry of 1 chelate molecule per protein dimer. 13C resonances of Lys-24, Lys-46, and Lys-69 were maximally shifted by the terbium chelate and were maximally relaxed by the gadolinium chelate. Also, the terbium chelate was excluded by the oligomer d(pA)7. Computer fits of the induced chemical shifts of 13C resonances with those expected for various positions of the terbium chelate failed to yield a possible chelate binding site unless the chemical shift for Lys-24 was excluded from the fitting process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Genotyping in closed tube is commonly performed using polymerase chain reaction (PCR) amplification and allele-specific oligonucleotide probes using fluorescence resonance energy transfer (FRET). Here we introduce a homogeneous human leukocyte antigen (HLA)–DQA1∗05 end-point PCR assay based on switchable lanthanide luminescence probe technology and a simple dried blood sample preparation. The switchable probe technology is based on two non-luminescent oligonucleotide probes: one carrying a non-luminescent lanthanide chelate and the other carrying a light-absorbing antenna ligand. Hybridization of the probes in adjacent positions to the target DNA leads to the formation of a highly luminescent lanthanide chelate complex by self-assembly of the reporter molecules. Performance of the HLA–DQA1∗05 assay was evaluated by testing blood samples collected on sample collection cards and was prepared by lysing the punched samples (3-mm discs) using alkaline reaction conditions and high temperature. Testing of 147 blood samples yielded 100% correlation to the heterogeneous DELFIA technology-based reference assay. Genotyping requires carefully designed probe sequences able to discriminate matched and mismatched target sequences by hybridization. Furthermore, definite genotype discrimination was achieved because inherently non-luminescent switchable probes together with time-resolved measurement mode led to very low background signal level and, therefore, very high signal differences averaging 54-fold between DQA1∗05 and other alleles.  相似文献   

15.
A potent lanthanide chelate, fulfilling the requirements for the development of MRI contrast agents or luminescent probes, was armed with alkyne groups. We then implemented a click methodology to graft the bifunctional ligand to azide-containing glucoside and maltoside scaffolds. The resulting hydrophilic glycoconjugates retained the ligand binding capacity for Eu(3+) or Tb(3+) ion as evidenced by the number of bound water molecules to the lanthanide ion. Divalent Eu(3+) and Tb(3+) complexes were shown to double the brightness of the emitted fluorescent signal compared to its monovalent derivatives. Designing multivalent lanthanide luminescent probes would enable the fluorescent signal of labeled biomolecules to be enhanced.  相似文献   

16.
Enzyme-amplified lanthanide luminescence (EALL) is a new method which has been developed for enzymatically amplified signal detection in ultrasensitive bioanalytical assays where an enzyme is used as label or is itself the analyte of interest. Signal generation is performed by enzymatically transforming a substrate into a product which forms a luminescent lanthanide chelate; the product chelate can then be detected using time-resolved or normal fluorescence methods. Alkaline phosphatase substrates have been developed and demonstrated in a model immunoassay in microwell format. The method has also been demonstrated for detection of a variety of other hydrolytic and oxidative enzymes. Thus the EALL method shows promise for use in a wide variety of bioanalytical applications.  相似文献   

17.
The use of lanthanides in preference to radioisotopes as probes for various biological assays has gained enormous popularity. The introduction of lanthanide chelates to peptides/proteins can be carried out either in solution using a commercially available labelling kit or by solid‐phase peptide synthesis using an appropriate lanthanide chelate. Herein, a detailed protocol for the latter is provided for the labelling of peptides or small proteins with diethylenetriamine‐N, N, N″, N″‐tetra‐tert‐butyl acetate‐N′‐acetic acid (DTPA) chelate or other similar chelates on a solid support using a chimeric insulin‐like peptide composed of human insulin‐like peptide 5 (INSL5) A‐chain and relaxin‐3 B‐chain as a model peptide. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The synthesis of oligopeptide building blocks for the introduction of nonluminescent and luminescent lanthanide(III) chelates to the oligopeptide structure on the solid phase is described. The oligopeptide conjugates synthesized were used in DELFIA-based receptor binding assay (motilin) as well as in LANCE time-resolved fluorescence quenching assay (caspase-3).  相似文献   

19.
CD studies carried out on A23187 indicate a solvent-dependent conformation for the free acid. Alkali metal ions were found to bind to the ionophore weakly. Divalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+ and Co2+ and trivalent lanthanide metal ions like La3+ were found to form predominantly 2:1 (ionophore-metal ion) complexes at low concentrations of metal ions, but both 2:1 and 1:1 complexes were formed with increasing salt concentration. Mg2+ and Co2+ exhibit similar CD behaviour that differs from that observed for the other divalent and lanthanide metal ions. The structure of 2:1 complexes involves two ligand molecules coordinated to the metal ion through the carboxylate oxygen, benzoxazole nitrogen and keto-pyrrole oxygen from each ligand molecule along with one or more solvent molecules. Values of the binding constant were determined for 2:1 complexes of the ionophore with divalent and lanthanide metal ions.  相似文献   

20.
Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号