首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic exercise training elicits adaptations in the heart that improve pump function and confer cardioprotection. To identify molecular mechanisms by which exercise training stimulates this favorable phenotype, a proteomic approach was employed to detect rat cardiac proteins that were differentially expressed or modified after exercise training. Exercise-trained rats underwent six weeks of progressive treadmill training five days/week, 0% grade, using an interval training protocol. Sedentary control rats were age- and weight-matched to the exercise-trained rats. Hearts were harvested at various times (0-72 h) after the last bout of exercise and were used to generate 2-D electrophoretic proteome maps and immunoblots. Compared with hearts of sedentary rats, 26 protein spot intensities were significantly altered in hypertrophied hearts of exercise-trained rats (p <0.05), and 12 spots appeared exclusively on gels from hearts of exercise-trained rats. Immunoblotting confirmed that chronic exercise training, but not a single bout of exercise, elicited a 2.5-fold increase in the abundance of one of the candidate proteins in the heart, a 20 kDa heat shock protein (hsp20) that persisted for at least 72 h of detraining. Thus, exercise training alters the cardiac proteome of the rat heart; the changes include a marked increase in the expression of hsp20.  相似文献   

2.
The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal–Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.  相似文献   

3.
Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF) content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P < 0.01), it also decreased the drip loss at 48 h post-mortem and the b* meat color value at 24 h post-mortem; supplementation with 1% dietary L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1) protein and negatively correlated with myosin heavy chain IIb (MyHC IIb) protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs.  相似文献   

4.
Convulsive status epilepticus is associated with subsequent hippocampal damage and development of mesial temporal sclerosis in a subset of individuals. The lithium pilocarpine model of status epilepticus (SE) in the rat provides a model in which to investigate the molecular and pathogenic process leading to hippocampal damage. In this study, a 2-DE-based approach was used to detect proteome changes in the hippocampus, at an early stage (2 days) after SE, when increased T2 values were detectable by magnetic resonance imaging. Gel image analysis was followed by LC-MS/MS identification of protein species that differed in abundance between pilocarpine-treated and control rats. The most significantly up-regulated species in the experimental animals was identified as heat shock 27-kDa protein, in line with findings in humans and in other experimental models of epilepsy. Additional up-regulated species included dihydropyrimidinase-related protein-2, cytoskeletal proteins (alpha-tubulin and ezrin) and dihydropteridine reductase. In summary, the hippocampus of rats subject to pilocarpine-induced SE exhibits specific changes in protein abundance, which likely relate to pathogenic, neuroprotective and neurogenic responses.  相似文献   

5.
Female rats were initially divided into a sedentary or an exercise group that was trained by treadmill running to a final work rate of 31 m/min, 100 min/day, for 13-18 wk. During the last 12 days of training each of these groups were further subdivided into groups that received daily subcutaneous injections of cortisol acetate (CA) (100 mg/kg body wt) or the vehicle (1% carboxymethyl cellulose). Exercise prevented approximately 40% of the gastrocnemius muscle weight loss due to CA treatment. Training did not influence glucocorticoid cytosol-receptor binding concentrations, using [3H]triamcinolone acetonide (TA) as the labeled glucocorticoid in any of the skeletal muscle types investigated. TA-receptor binding capacities were depleted by the multiple injections but were higher in the red fiber types of the CA-treated trained than those in the CA-treated sedentary animals. In a second series of experiments in which receptor depletion and repletion rates were studied using a single injection of cortisol, TA binding capacities 2 h after the cortisol injection were higher in slow-twitch red soleus muscles of trained as compared with sedentary rats (36.4 +/- 2.0 vs. 26.8 +/- 2.5 fmol/mg protein). Similar patterns of TA binding were also observed at 2 h between trained and sedentary animals in the fast-twitch red muscle types, whereas no training related differences were observed in white muscle types. Total and free serum cortisol concentrations also returned to base-line values faster in the trained animals following the single injection protocol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Experiments on rats and mice were performed to study the effects of different substances modifying RES functions on hepatocyte proliferation. It was shown that as early as 24 hours after Kupffer cell (KC) overloading with colloidal iron particles the number of hepatocytes in mitosis increased. The mitotic rate increased by 32 h and decreased between 48 and 72 h following iron injection. Forty-eight h after injection of latex particles the hepatocyte mitotic peak could be identified. Twenty-four and 48 h after zymozan injection DNA synthesis in sinusoidal liver cells correspondingly increased. Hepatocytes in mitosis appeared 5 days later, reaching the peak value after 9 days followed by a decrease 12 days after zymozan injection. The depression of the hepatocyte mitotic rate was also observed 9 days after BCG and 15 days after prodigiozan injection. The data are suggestive of the importance of KC as potential inducers of hepatocyte proliferation.  相似文献   

7.

Background

Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle.

Methodology/Principal Findings

The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1–10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased.

Conclusions/Significance

Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue.  相似文献   

8.

Background

The involvement of muscle triacylglycerol (TAG) storage in the onset of insulin resistance is questioned and the attention has shifted towards inhibition of insulin signalling by the lipid intermediate diacylglycerol (DAG). The enzyme 1,2-acylCoA:diacylglyceroltransferase-1 (DGAT1) esterifies a fatty acyl-CoA on DAG to form TAG. Therefore, the aim of the present study was to investigate if unilateral overexpression of DGAT1 in adult rat Tibialis anterior (TA) muscle will increase conversion of the lipid intermediate DAG into TAG, thereby improving muscle insulin sensitivity.

Methodology/Principal Findings

The DGAT1 gene construct was injected in the left TA muscle of male rats on chow or high-fat (45% kcal) diet for three weeks, followed by application of one 800 V/cm and four 80 V/cm pulses, using the contralateral leg as sham-electroporated control. Seven days after electroporation, muscle specific insulin sensitivity was assessed with a hyperinsulinemic euglycemic clamp using 2-deoxy-[3H]glucose. Here, we provide evidence that unilateral overexpression of DGAT1 in TA muscle of male rats is associated with an increased rather than decreased DAG content. Strikingly, this increase in DAG content was accompanied by improved muscle insulin sensitivity. Interestingly, markers of muscle lipolysis and mitochondrial function were also increased in DGAT1 overexpressing muscle.

Conclusions/Significance

We conclude that unilateral DGAT1 overexpression can rescue insulin sensitivity, possibly by increasing DAG and TAG turnover in skeletal muscle. In case of a proper balance between the supply and oxidation of fatty acids in skeletal muscle, the lipid intermediate DAG may not exert harmful effects on insulin signalling.  相似文献   

9.

Background

Infraorbital nerve constriction (IoNC) is an experimental model of trigeminal neuropathy. We investigated if IoNC is accompanied by dural extravasation and if botulinum toxin type A (BoNT/A) can reduce pain and dural extravasation in this model.

Methodology/Principal Findings

Rats which developed mechanical allodynia 14 days after the IoNC were injected with BoNT/A (3.5 U/kg) into vibrissal pad. Allodynia was tested by von Frey filaments and dural extravasation was measured as colorimetric absorbance of Evans blue - plasma protein complexes. Presence of dural extravasation was also examined in orofacial formalin-induced pain. Unilateral IoNC, as well as formalin injection, produced bilateral dural extravasation. Single unilateral BoNT/A injection bilaterally reduced IoNC induced dural extravasation, as well as allodynia (lasting more than 2 weeks). Similarly, BoNT/A reduced formalin-induced pain and dural extravasation. Effects of BoNT/A on pain and dural extravasation in IoNC model were dependent on axonal transport through sensory neurons, as evidenced by colchicine injections (5 mM, 2 µl) into the trigeminal ganglion completely preventing BoNT/A effects.

Conclusions/Significance

Two different types of pain, IoNC and formalin, are accompanied by dural extravasation. The lasting effect of a unilateral injection of BoNT/A in experimental animals suggests that BoNT/A might have a long-term beneficial effect in craniofacial pain associated with dural neurogenic inflammation. Bilateral effects of BoNT/A and dependence on retrograde axonal transport suggest a central site of its action.  相似文献   

10.
Electroporation (EP) is used to transfect skeletal muscle fibers in vivo, but its effects on the structure and function of skeletal muscle tissue have not yet been documented in detail. We studied the changes in contractile function and histology after EP and the influence of the individual steps involved to determine the mechanism of recovery, the extent of myofiber damage, and the efficiency of expression of a green fluorescent protein (GFP) transgene in the tibialis anterior (TA) muscle of adult male C57Bl/6J mice. Immediately after EP, contractile torque decreased by ~80% from pre-EP levels. Within 3 h, torque recovered to ~50% but stayed low until day 3. Functional recovery progressed slowly and was complete at day 28. In muscles that were depleted of satellite cells by X-irradiation, torque remained low after day 3, suggesting that myogenesis is necessary for complete recovery. In unirradiated muscle, myogenic activity after EP was confirmed by an increase in fibers with central nuclei or developmental myosin. Damage after EP was confirmed by the presence of necrotic myofibers infiltrated by CD68+ macrophages, which persisted in electroporated muscle for 42 days. Expression of GFP was detected at day 3 after EP and peaked on day 7, with ~25% of fibers transfected. The number of fibers expressing green fluorescent protein (GFP), the distribution of GFP+ fibers, and the intensity of fluorescence in GFP+ fibers were highly variable. After intramuscular injection alone, or application of the electroporating current without injection, torque decreased by ~20% and ~70%, respectively, but secondary damage at D3 and later was minimal. We conclude that EP of murine TA muscles produces variable and modest levels of transgene expression, causes myofiber damage due to the interaction of intramuscular injection with the permeabilizing current, and that full recovery requires myogenesis.  相似文献   

11.
12.
13.
14.
Both functional overload and hindlimb disuse induce significant energy-dependent remodeling of skeletal muscle. Lactate dehydrogenase (LDH), an important enzyme involved in anaerobic glycolysis, catalyzes the interconversion of lactate and pyruvate critical for meeting rapid high-energy demands. The purpose of this study was to determine rat soleus LDH-A and -B isoform expression, mRNA abundance, and enzymatic activity at the onset of increased or decreased loading in the rat soleus muscle. The soleus muscles from male Sprague-Dawley rats were functionally overloaded for up to 3 days by a modified synergist ablation or subjected to disuse by hindlimb suspension for 3 days. LDH mRNA concentration was determined by Northern blotting, LDH protein isoenzyme composition was determined by zymogram analysis, and LDH enzymatic activity was determined spectrophotometrically. LDH-A mRNA abundance increased by 372%, and LDH-B mRNA abundance decreased by 43 and 31% after 24 h and 3 days of functional overload, respectively, compared with that in control rats. LDH protein expression demonstrated a shift by decreasing LDH-B isoforms and increasing LDH-A isoforms. LDH-B activity decreased 80% after 3 days of functional overload. Additionally, LDH-A activity increased by 234% following 3 days of hindlimb suspension. However, neither LDH-A or LDH-B mRNA abundance was affected following 3 days of hindlimb suspension. In summary, the onset of altered loading induced a differential expression of LDH-A and -B in the rat soleus muscle, favoring rapid energy production. Long-term altered loading is associated with myofiber conversion; however, the rapid changes in LDH at the onset of altered loading may be involved in other physiological processes.  相似文献   

15.
Compared with glucose, lactate + acetate stimulated ventricular protein synthesis in anterogradely perfused hearts from fed or 72 h-starved rats. Stimulation was greater on a percentage basis in starved rats. Atrial protein synthesis was not detectably stimulated by lactate + acetate. Insulin stimulated protein synthesis in atria and ventricles. The stimulation of protein synthesis by lactate + acetate and insulin was not additive, the percentage stimulation by insulin being less in the ventricles of lactate + acetate-perfused hearts than in glucose-perfused hearts. Perfusion of hearts from 72 h-starved or alloxan-diabetic rats with glucose + lactate + acetate + insulin did not increase protein-synthesis rates or efficiencies (protein synthesis expressed relative to total RNA) to values for fed rats, implying there is a decrease in translational activity in these hearts. In the perfused heart, inhibition of protein synthesis by starvation and its reversal by re-feeding followed a relatively prolonged time course. Synthesis was still decreasing after 3 days of starvation and did not return to normal until after 2 days of re-feeding.  相似文献   

16.
Previous studies have shown a decrease in plasma testosterone during prolonged physical exercise and 72 h fasting in rats. To determine whether this hormonal change has an influence upon energy metabolism, two experiments were carried out, in which the plasma levels of testosterone were elevated during prolonged physical exercise and fasting in male wistar rats. The effects of acute and chronic increases in the levels of circulating testosterone were studied, on the one hand after human chorionic gonadotropin (H.C.G.) injection, and on the other by prolonged testosterone perfusion with an osmotic minipump. Blood and tissue sampling were performed to evaluate blood glucose, alanine, and lactate, and tissue glycogen. The results in fed and rest control rats showed no changes in blood parameters under the effect of hypertestosteronemia but there was an increase in muscle glycogen after testosterone perfusion. In 72 h fasted rats both types of hypertestosteronemia were associated with a decrease in blood alanine and lactate ranging from 25% to 35%. Only testosterone perfusion was associated with higher concentrations of muscle glycogen. After 7 h of treadmill running, testosterone perfusion and H.C.G. injection induced a 35% decrease in blood alanine and a slight decrease in blood glucose, with no change in other parameters. Whereas an elevation in the level of testosterone can induce muscle glycogen compensation in the fed resting state, it cannot counteract the exhaustion of muscle glycogen during running.  相似文献   

17.
Sports trauma are able to induce muscle injury with fibrosis and accumulation of intermuscular adipose tissue (IMAT), which affect muscle function. This study was designed to investigate whether hypoactivity would influence IMAT accumulation in regenerating mouse skeletal muscle using the glycerol model of muscle regeneration. The animals were immediately hindlimb unloaded for 21 days after glycerol injection into the tibialis anterior (TA) muscle. Muscle fiber and adipocyte cross-sectional area (CSA) and IMAT accumulation were determined by histomorphometric analysis. Adipogenesis during regenerative processes was examined using RT-qPCR and Western blot quantification. Twenty-one days of hindlimb unloading resulted in decreases of 38% and 50.6% in the muscle weight/body weight ratio and CSA, respectively, in soleus muscle. Glycerol injection into TA induced IMAT accumulation, reaching 3% of control normal-loading muscle area. This IMAT accumulation was largely inhibited in unloading conditions (0.09%) and concomitant with a marked reduction in perilipin and FABP4 protein content, two key markers of mature adipocytes. Induction of PPARγ and C/EBPα mRNA, two markers of adipogenesis, was also decreased. Furthermore, the protein expression of PDGFRα, a cell surface marker of fibro/adipogenic progenitors, was much lower in regenerating TA from the unloaded group. Exposure of regenerating muscle to hypoactivity severely reduces IMAT development and accumulation. These results provide new insight into the mechanisms regulating IMAT development in skeletal muscle and highlight the importance of taking into account the level of mechanical constraint imposed on skeletal muscle during the regeneration processes.  相似文献   

18.
Although insulin-like growth factor 1 (IGF 1) has been used in immobilizated muscles to prevent muscle atrophy, its effects on muscle atrophy after brain ischemia are not known. This study aimed to determine the effects of IGF 1 on preventing muscle atrophy in rats with brain ischemia. Middle cerebral artery occlusion (MCAO) was used to induce the brain ischemia. In the first part of the study, rats were assigned to sham control, ischemic control, and ischemia with different dosages of IGF 1 injection groups to determine the optimal dosage of IGF 1 on preventing muscle atrophy after brain ischemia. In the second part of the study, rats were assigned to sham control, ischemic control, ischemia with IGF 1, or with IGF 1 receptor inhibitor (AG1024) injection groups to determine the specificity of IGF 1 on preventing muscle atrophy after brain ischemia. IGF 1 or AG1024 was injected locally to calf muscles and anterior tibialis (TA) starting from one day after brain ischemia and injections were carried out every other day for 4 times. Muscle weight and myosin heavy chain (MHC) expression in both red (red gastrocnemius and soleus) and white (white gastrocnemius and TA) muscles were significantly decreased after brain ischemia. With at least moderate-dosage (200 ng/100 microl PBS) IGF 1 injection, the muscle weight and MHC protein could be restored in both red and white muscles resulting in better motor performance. However, the high-dose injection of IGF 1 (400 ng/100 microl PBS) did not result in further effects. IGF 1 increased the expression of p-Akt, but such effects were prevented by AG1024 resulting in muscle atrophy and poor motor function. In conclusion, peripheral application of IGF 1 not only prevented muscle atrophy but also enhanced motor function in rats with brain ischemia. The IGF 1-induced PI3K/Akt pathways are important for preventing muscle atrophy induced by brain ischemia.  相似文献   

19.
We determined the effect of muscle contractions resulting from high-frequency electrical stimulation (HFES) on inflammatory cells in rat tibialis anterior (TA), plantaris (Pln), and soleus (Sol) muscles at 6, 24, and 72 h post-HFES. A minimum of four and a maximum of seven rats were analyzed at each time point. HFES, applied to the sciatic nerve, caused the Sol and Pln to contract concentrically and the TA to contract eccentrically. Neutrophils were higher (P < 0.05) at 6 and 24 h after HFES in the Sol, Pln, and TA muscles relative to control muscles. ED1(+) macrophages in the Pln were elevated at 6 and 24 h after HFES and were also elevated in the Sol and TA after HFES relative to controls. ED2(+) macrophages in the Sol and TA were elevated at 24 and 72 h after HFES, respectively, and were also elevated in the Pln after HFES relative to controls. In contrast to the TA muscles, the Pln and Sol muscles showed no gross histological abnormalities. Collectively, these data indicate that both eccentric and concentric contractions can increase inflammatory cells in muscle, regardless of whether overt histological signs of injury are apparent.  相似文献   

20.
In the mdx mice, lack of dystrophin leads to increases in calcium influx and myonecrosis, followed by muscle regeneration. Synapse elimination is faster in mdx than in controls, suggesting that increases in calcium influx during development could be involved. In the present study, we evaluated whether dystrophic fibers display changes in permeability to Evans Blue Dye (EBD) during development of the neuromuscular junction. EBD is a sensitive label for the early detection of increased myofiber permeability and sarcolemmal damage. After intraperitoneal injection of EBD, sternomastoid (STN) and tibialis anterior (T. anterior) muscles were analyzed with fluorescence microscopy. At 01, 07 and 14 days of age, STN and TA mdx myofibers were not stained with EBD. At 21 days of age, positive labeling of TA and STN mdx myofibers was seen, suggesting permeability modification and myonecrosis. Adult muscles showed a decrease (T. anterior) or no changes (STN) in the amount of EBD-positive fibers. These results suggest that there is no sarcolemmal damage detected by EBD during development of dystrophic neuromuscular junctions and other factors may contribute to the earlier synapse elimination seen in dystrophic muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号