共查询到20条相似文献,搜索用时 15 毫秒
1.
O. V. Shamova G. A. Sakuta D. S. Orlov V. V. Zenin G. I. Stein N. I. Kolodkin I. V. Afonina V. N. Kokryakov 《Cell and Tissue Biology》2007,1(6):524-533
We carried out a study of the effects of two structurally different cationic antimicrobial peptides of cathelicidin family, porcine protegrin 1 (PG1) and caprine Bac5 on selected tumor and normal mammalian cells in vitro. Protegrins are amphiphilic β-hairpin molecules having broad-spectrum antimicrobial activity due to their marked membranolytic effects. Bac5 belongs to a group of proline-rich peptides, which adopt a polyproline type II extended helix and kill microorganisms rather by a nonlytic mechanism. We have shown that while PG1 exerted distinct and fast cytotoxic effects towards most of used tumor cells being in a lesser degree toxic for nontransformed host cells; the proline-rich peptide Bac5 possessed modest cytotoxic activity for all tested cells. The toxic effects of PG1 were partially declined in the presence of 10% fetal calf serum. It was revealed that PG1 was able to interact with proteins of serpin family (as was previously established for human defensins by Panyutich at al., 1995). Pre-incubation of PG1 with α1-antitrypsin caused the decrease of the cytotoxic activity of the peptide and, on the other hand, the antiprotease activity of α1-antitrypsin was reduced after the interaction of the serpin with PG1 (while Bac5 did not affect the antiprotease activity of α1-antitrypsin). We used BODIPY FL-tagged PG1 and Bac5 to study the internalization of the labeled peptides into target cells and their intracellular distribution by confocal microscopy. Bac5-BODIPY (at 5 μ M) was rapidly taken into the cells. PG1-BODIPY at non-toxic concentrations (1—3 μM) was also able to enter the cells without their damaging. By using flow cytometry we showed that lowering a temperature to 4°C caused a significant decrease in the uptake into K562 and U937 cells for both Bac5-BODIPY and PG1-BODIPY. A decline of target cells metabolism also diminished the process of both peptides internalization but for a lesser degree. In the presence of endocytosis inhibitors the penetration of Bac5-BODIPY and PG1-BODIPY into K562 cells was also reduced, but not completely abolished, suggesting that along with endocytosis process some direct penetration of the peptides across cell membranes takes place. The ability of the peptides to internalize into eukaryotic cells may contribute to the idea of participation of AMPs in varied intracellular events, occurring in normal or malignant host cells, for instance, in the modulation of intracellular serpins activity. 相似文献
2.
3.
4.
Huan Liu Lin Wei Tianhua Yan Ming Chen Keyun Zhang Jianxu Li Dewen You Ren Lai 《Journal of peptide science》2011,17(9):627-631
Two antimicrobial peptides (piceain 1 and 2) derived from sequences encoded Picea sitchensis are identified. Their amino acid sequences are KSLRPRCWIKIKFRCKSLKF and RPRCWIKIKFRCKSLKF, respectively. One intra‐molecular disulfide bridge is formed by these two half‐cysteines in both piceain 1 and 2. Antimicrobial activities of synthesized piceains against several kinds of microorganisms were tested. They showed antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and fungus Candida albicans but little antimicrobial activity against Bacillus subtilis. The results of nematicidal test showed they exerted strong nematicidal activities against Caenorhabditis elegans, following exposure for 5 h at concentrations as low as 10 µg/ml. They had weak hemolytic abilities against human and rabbit red cells. At the concentration of 250 µg/ml, they induced red cell hemolysis of less than 5%. Circular dichroism spectra of the two antimicrobial peptides were investigated in several solutions. Their main secondary structure components are β‐sheet and random. The current work provides a novel family of antimicrobial and nematicidal peptides with unique disulfided loop containing nine amino acid residues. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
5.
Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity 总被引:1,自引:0,他引:1
Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure–activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis. 相似文献
6.
7.
《Genomics》2021,113(6):3851-3863
Host defense peptides are promising candidates for the development of novel antibiotics. To realize their therapeutic potential, high levels of target selectivity is essential. This study aims to identify factors governing selectivity via the use of the random forest algorithm for correlating peptide sequence information with their bioactivity data. Satisfactory predictive models were achieved from out-of-bag prediction that yielded accuracies and Matthew's correlation coefficients in excess of 0.80 and 0.57, respectively. Model interpretation through the use of variable importance metrics and partial dependence plots indicated that the selectivity was heavily influenced by the composition and distribution patterns of molecular charge and solubility related parameters. Furthermore, the three investigated bacterial target species (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) likely had a significant influence on how selectivity was realized as there appears to be a similar underlying selectivity mechanism on the basis of charge-solubility properties (i.e. but which is tailored according to the target in question). 相似文献
8.
9.
10.
[目的]为了发现新的农作物病原菌抗菌肽,人工设计并构建了大容量短肽文库,从中筛选并合成96条短肽用于鉴定其对农作物病原菌的抑菌活性.[方法]采用琼脂扩散法,对靶标菌一棉花枯萎病菌(Fusarium f.sp.vasinfecum)、棉花红腐病菌(Fusarium moniliforme)、小麦根腐病菌(Bipolaris sorokiniana)和马铃薯早疫病菌(Alternaria solani)进行抑菌初筛,并测定了有抗菌作用短肽的最小抑菌浓度和抑菌持久性.[结果]得到了A6、D4和F10对上述四种病原真菌抑菌效果较强,抑菌时间较长的抗菌肽,通过与抗菌肽数据库氨基酸序列对比,未见这3条抗菌肽的同源序列.[结论]研制的3条短肽属于新颖抗菌肽,为防治农作物真菌病害提供了新的基因资源. 相似文献
11.
D. Schillaci V. Arizza N. Parrinello V. Di Stefano S. Fanara V. Muccilli V. Cunsolo J.J.A. Haagensen S. Molin 《Journal of applied microbiology》2010,108(1):17-24
Aims: Staphylococcal biofilm-associated infections are resistant to conventional antibiotics. Consequently, new agents are needed to treat them. With this aim, we focused on the effector cells (coelomocytes) of the sea urchin Paracentrotus lividus immune system.
Methods and Results: We tested the activity of the 5-kDa peptide fraction of the cytosol from coelomocytes (5-CC) against a group of Gram-positive, Gram-negative bacteria and fungi. We determined minimal inhibitory concentrations (MICs) ranging from 253·7 to 15·8 mg ml−1 . We observed an inhibitory activity and antibiofilm properties of 5-CC against staphylococcal biofilms of reference strains Staphylococcus epidermidis DSM 3269 and Staphylococcus aureus ATCC 29213. The antimicrobial efficacy of 5-CC against the biofilms of clinical strain Staph. epidermidis 1457 was also tested using live/dead staining in combination with confocal laser scanning microscopy. At a sub-MIC concentration (31·7 mg ml−1 ) of 5-CC the formation of young (6-h old) and mature (24-h old) staphylococcal biofilms was inhibited.
Conclusions: The biological activity of 5-CC could be attributed to three peptides belonging to the sequence segment 9–41 of a beta-thymosin of P. lividus .
Significance and Impact of the Study: The effector cells of P. lividus represent an interesting source of marine invertebrates-derived antimicrobial agents in the development of new strategies to treat staphylococcal biofilms. 相似文献
Methods and Results: We tested the activity of the 5-kDa peptide fraction of the cytosol from coelomocytes (5-CC) against a group of Gram-positive, Gram-negative bacteria and fungi. We determined minimal inhibitory concentrations (MICs) ranging from 253·7 to 15·8 mg ml
Conclusions: The biological activity of 5-CC could be attributed to three peptides belonging to the sequence segment 9–41 of a beta-thymosin of P. lividus .
Significance and Impact of the Study: The effector cells of P. lividus represent an interesting source of marine invertebrates-derived antimicrobial agents in the development of new strategies to treat staphylococcal biofilms. 相似文献
12.
Haitham A. Yacoub Omar A. Al-Maghrabi Ekram S. Ahmed 《Journal of biomolecular structure & dynamics》2017,35(4):836-856
NK-lysins are antimicrobial peptides (AMPs) that participate in the innate immune response and also have several pivotal roles in various biological processes. Such multifunctionality is commonly found among intrinsically disordered proteins. However, NK-lysins have never been systematically analyzed for intrinsic disorder. To fill this gap, the amino acid sequences of NK-lysins from various species were collected from UniProt and used for the comprehensive computational analysis to evaluate the propensity of these proteins for intrinsic disorder and to investigate the potential roles of disordered regions in NK-lysin functions. We analyzed abundance and peculiarities of intrinsic disorder distribution in all-known NK-lysins and showed that many NK-lysins are expected to have substantial levels of intrinsic disorder. Curiously, high level of intrinsic disorder was also found even in two proteins with known 3D-strucutres (NK-lysin from pig and human granulysin). Many of the identified disordered regions can be involved in protein–protein interactions. In fact, NK-lysins are shown to contain three to eight molecular recognition features; i.e. short structure-prone segments which are located within the long disordered regions and have a potential to undergo a disorder-to-order transition upon binding to a partner. Furthermore, these disordered regions are expected to have several sites of various posttranslational modifications. Our study shows that NK-lysins, which are AMPs with a set of prominent roles in the innate immune response, are expected to abundantly possess intrinsically disordered regions that might be related to multifunctionality of these proteins in the signal transduction pathways controlling the host response to pathogenic agents. 相似文献
13.
This review examines the question of whether exercise can be used as an experimental model to further our understanding of innate antimicrobial peptides and proteins (AMPs) and their role in susceptibility to infection at mucosal surfaces. There is strong evidence to suggest that AMPs, in combination with cellular and physical factors, play an important role in preventing infection. Although AMPs act directly on microorganisms, there is increasing recognition that they also exert their protective effect via immunomodulatory mechanisms, especially in noninflammatory conditions. Further studies that manipulate physiologically relevant concentrations of AMPs are required to shed light on the role they play in reducing susceptibility to infection. Evidence shows that in various form prolonged and/or exhaustive exercise is a potent modulator of the immune system, which can either sharpen or blunt the immune response to pathogens. The intensity and duration of exercise can be readily controlled in experimental settings to manipulate the degree of physical stress. This would allow for an investigation into a potential dose-response effect between exercise and AMPs. In addition, the use of controlled exercise could provide an experimental model by which to examine whether changes in the concentration of AMPs alters susceptibility to illness. 相似文献
14.
Gabriela Morilha Zanarotti Juliana A. Cândido‐Silva Jorge Cury de Almeida 《Genesis (New York, N.Y. : 2000)》2009,47(12):847-857
Recently we have shown that BhSGAMP‐1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20‐OH ecdysone. This control probably involves the participation of short‐lived repressor(s). We also found that the promoter of BhSGAMP‐1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP‐1 peptide is secreted in the saliva. The BhSGAMP‐1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect's immediate vicinity, during molts. genesis 47:847–857, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
15.
Pin-Kuang Lai Daniel T. Tresnak Benjamin J. Hackel 《Biotechnology and bioengineering》2019,116(10):2439-2450
Proline-rich antimicrobial peptides (PrAMPs) kill bacteria via a nonlytic mechanism in which they permeate through the outer membrane, utilize protein-mediated transport across the inner membrane, and target the ribosome to inhibit protein synthesis. We previously reported that substitutions of oncocin () with a pair of cationic residues improved the antimicrobial activity. In this study, we applied the design protocol to three other PrAMPs: apidaecin-1b, pyrrhocoricin, and bactenecin 7(1–16) and found that the substitutions (R4K and I8K/R) for apidaecin-1b improve the activity by twofold (p < .05) against nonpathogenic Escherichia coli. Moreover, the substitutions (L7K/R and R14K) for pyrrhocoricin improve the activity by 2–10-fold (p < .05) against some strains of E. coli and Salmonella Typhimurium. We also performed activity tests against inner membrane protein (SbmA or YgdD) knockout strains. The result is consistent with previous studies that SbmA is the major transporter for apidaecin-1b and pyrrhocoricin derivatives. However, bactenecin 7(1–16) functions independently of these transporters. In addition, several apidaecin-1b derivatives exhibit enhanced activity relative to wild-type only in the absence of SbmA, which is consistent with mutations that enhance transport across the inner membrane. A high performance liquid chromatography-based kinetic assay for cellular association and internalization demonstrates that the selected cationic mutations can improve cellular association in minimal media, but this enhanced association is not required for increased activity, which suggests the importance of inner membrane transport. These functional studies on cationic mutants of PrAMPs advance understanding of potency and mechanism and advance the ability to engineer improved antimicrobials as evidenced by the identification of the pyrrhocoricin mutant (L7R and R14K) with 10-fold elevated potency against pathogenic E. coli. 相似文献
16.
A. A. Romani M. C. Baroni S. Taddei F. Ghidini P. Sansoni S. Cavirani C. S. Cabassi 《Journal of peptide science》2013,19(9):554-565
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
17.
Two novel antimicrobial peptides with similarity to brevinin‐2 family are purified and characterized from the skin secretions of the frog, Rana nigrovittata. Their amino acid sequences were determined as GAFGNFLKGVAKKAGLKILSIAQCKLSGTC (brevinin‐2‐RN1) and GAFGNFLKGVAKKAGLKILSIAQCKLFGTC (brevinin‐2‐RN2), respectively, by Edman degradation. Different from brevinin‐2, which is composed of 33 amino acid residues (aa), both brevinin‐2‐RN1 and ‐RN2 contain 30 aa. Five cDNA sequences (Genbank accession numbers, EU136465‐9) encoding precursors of brevinin‐2‐RN1 and ‐RN2 were screened from the skin cDNA library of R. nigrovittata. These precursors are composed of 72 aa including a predicted signal peptide, an acidic spacer peptide, and a mature brevinin‐2‐RN. Both brevinin‐2‐RN1 and ‐RN2 showed strong antimicrobial activities against gram‐positive and gram‐negative bacteria and fungi. The current work identified and characterized two novel antimicrobial peptides with unique primary structure. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
18.
19.
In this study, two novel antimicrobial peptides from the skin secretions of the marsh frog, Rana ridibunda, named temporin‐Ra and temporin‐Rb, were identified and purified using RP‐HPLC. Temporin‐Ra and temporin‐Rb are composed of 14 and 12 amino acids, respectively. Our results show that these peptides have inhibitory effects on both gram‐negative and gram‐positive bacteria, especially antibiotic resistant strains prevalent in hospitals, such as Staphylococcus aureus and Streptococcus agalactiae. The sequences and molecular weights of these peptides were determined using tandem MS. The molecular masses were found to be 1242.5 Da for temporin‐Rb and 1585.1 Da for temporin‐Ra. Human red blood cells tolerated well exposure to temporin‐Ra and temporin‐Rb, which, at a concentration of 60 µg/ml, induced 1.3% and 1.1% hemolysis, respectively. MIC values of these peptides are suitable for potent antimicrobial peptides. The low hemolytic effect and wide‐spectrum antimicrobial activity suggest a possible therapeutic application of these novel peptides. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd. 相似文献