首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Protein phosphorylation was investigated in the bacterium Acinetobacter calcoaceticus both in vivo and in vitro. In cells grown with [32P]orthophosphate, several radioactive phosphoproteins were detected by gel electrophoresis and autoradiography. These proteins were shown to contain phosphoserine, phosphothreonine, and a relatively large proportion of phosphotyrosine residues. Incubation of cellular extracts with [gamma-32P] ATP also resulted in the phosphorylation of several proteins. At least four of them, namely an 81-kDa protein, were modified at tyrosine. No protein labeling occurred when extracts were incubated with [gamma-32P] ATP or [14C]ATP. Moreover, phosphoproteins were insensitive to snake venom phosphodiesterase. All together these results indicate that A. calcoaceticus harbors different protein kinases including a protein-tyrosine kinase activity. Further analysis of this activity showed that it has little, if any, functional similarity with eukaryotic protein-tyrosine kinases.  相似文献   

2.
Protein phosphorylation was demonstrated in Bradyrhizobium japonicum bacteroids in vivo and in cultures in vivo and in vitro. Comparison of in vivo-labeled phosphoproteins of bacteroids and of cultured cells showed differences in both the pattern and intensity of labeling. In cultured cells, comparison of the labeling patterns and intensities of in vivo- and in vitro-labeled phosphoproteins showed a number of similarities; however, several phosphoproteins were found only after one of the two labeling conditions. The labeling intensity was time dependent in both in vivo and in vitro assays and was dependent on the presence of magnesium in in vitro assays. Differences in the rates of phosphorylation and dephosphorylation were noted for a number of proteins. The level of incorporation of 32P into protein was only 2% or less of the total phosphate accumulated during the in vivo labeling period. Several isolation and sample preparation procedures resulted in differences in labeling patterns. Phosphatase inhibitors and several potential metabolic effectors had negligible effects on the phosphorylation pattern. There were no significant changes in the phosphorylation patterns of cells cultured on mannitol, acetate, and succinate, although the intensity of the labeling did vary with the carbon source.  相似文献   

3.
Phosphorylated proteins of bovine chromaffin cells, radioactively labeled with [32P]orthophosphate, have been analyzed by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Complex two-dimensional electrophoretograms were studied with the aid of computer-assisted image analysis (CAIA). A database map of 32P-labeled proteins was constructed; approximately 500 polypeptides have been detected, numbered, and characterized according to the intensity of labeling, molecular weight, and isoelectric point. The database was constructed from cells kept in resting conditions or stimulated with 59 mM K+ in 2.5 mM Ca2+ or in 0 Ca2+ solution. These manipulations caused statistically significant changes in the degree of phosphorylation of 20 proteins; they were classified as Ca2+-dependent substrates for the phosphorylation or dephosphorylation processes. These changes were also shown in cells stimulated in the presence of the Ca2+ channel activator Bay K 8644. New proteins that show as much as a fivefold increase in their phosphorylation state during cell stimulation have been located with this methodology, as well as many others that had not previously been detected with conventional methods. These experiments provide the first CAIA database of chromaffin cell phosphoproteins; the map constructed with these data will allow the location of specific phosphoproteins and serve as a reference for future ongoing studies. The database will continue to grow to identify more proteins and to facilitate the comparison of complex patterns obtained in different laboratories for normal and transformed pheochromocytoma PC12 cells.  相似文献   

4.
The possible involvement of protein phosphorylation in the clostridial stress response was investigated by radioactively labeling growing cells of Clostridium acetobutylicum with 32Pi or cell extracts with [gamma-32P]ATP. Several phosphoproteins were identified; these were not affected by the growth stage of the culture. Although the extent of protein phosphorylation was increased by heat stress, the phosphoproteins did not correspond to known stress proteins seen in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified clostridial DnaK, a stress protein, acted as a kinase catalyzing the phosphorylation of a 50-kilodalton protein. The phosphorylation of this protein was enhanced in extracts prepared from heat-stressed cells. Diadenosine-5',5"'-P1,P4-tetraphosphate had no influence on protein phosphorylation.  相似文献   

5.
The possible involvement of protein phosphorylation in the clostridial stress response was investigated by radioactively labeling growing cells of Clostridium acetobutylicum with 32Pi or cell extracts with [gamma-32P]ATP. Several phosphoproteins were identified; these were not affected by the growth stage of the culture. Although the extent of protein phosphorylation was increased by heat stress, the phosphoproteins did not correspond to known stress proteins seen in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified clostridial DnaK, a stress protein, acted as a kinase catalyzing the phosphorylation of a 50-kilodalton protein. The phosphorylation of this protein was enhanced in extracts prepared from heat-stressed cells. Diadenosine-5',5"'-P1,P4-tetraphosphate had no influence on protein phosphorylation.  相似文献   

6.
We have investigated the endogenous phosphorylation patterns of phosphorylated proteins of Xanthomonas campestris pv. oryzae induced by its bacteriophages. For bacteriophage Xp12-infected cells, at least three phosphoproteins with apparent molecular weights of 28, 28.5 and 45kDa were detected by in vitro labeling with [-32P]-ATP. These Xp12-specific phosphoproteins only occurred with Xp12 infection, and were not shown in uninfected or Xp10-infected cells. The protein kinase(s) responsible could use either ATP or GTP as the nucleotide substrate with nearly the same efficiency. Magnesium was proved to be an essential factor for the phosphorylation. EGTA treatment excluding the possibility that the presumed protein kinase was calcium-dependent. Under our reaction conditions, the optimal phosphorylation occurred at pH 7 to 8, for 30 to 40 min at 25 to 37°C. The Xp12-specific protein phosphorylation hint the existence of a physiological regulation mechanism involved in the life cycle of bacteriophage Xp12. Furthermore, the presumed protein kinase was shown to be encoded by the genome of Xp12 rather than indirectly induced by Xp12 infection.  相似文献   

7.
We investigated the effects of genistein, an inhibitor of tyrosine protein phosphorylation, on mouse 1-cell embryos, since in response to mitogenic stimuli tyrosine protein phosphorylation in somatic cells is implicated in initiation of DNA synthesis. Genistein inhibits cleavage of 1-cell embryos in a concentration-dependent and reversible manner; biochanin A, which is a less potent inhibitor of tyrosine protein phosphorylation, is a less potent inhibitor of cell cleavage. Genistein does not inhibit [35S]methionine incorporation, but does inhibit [3H]thymidine incorporation. Consistent with genistein's ability to inhibit cleavage by inhibiting DNA synthesis is that the loss of genistein's ability to inhibit cleavage corresponds with exit of the 1-cell embryos from S phase. Genistein is likely to inhibit tyrosine protein phosphorylation in situ, since it reduces by 80% the relative amount of [32P]phosphotyrosine present in 1-cell embryos; genistein does not inhibit either [32P]orthophosphate uptake or incorporation. As anticipated, genistein has little effect on inhibiting changes in the pattern of phosphoprotein synthesis during the first cell cycle, since tyrosine protein phosphorylation constitutes a small percentage of total protein phosphorylation. Alkalai treatment of [32P]radiolabeled phosphoproteins transferred to Immobilon reveals a base-resistant set of phosphoproteins of Mr = 32,000 that displays cell-cycle changes in phosphorylation. Although these properties suggest that these phosphoproteins may be related to the p34cdc2 protein kinase, phosphoamino acid analysis of [32P]radiolabeled phosphoproteins reveals that they are not enriched for phosphotyrosine; the inactive for p34cdc2 protein kinase contains a high level of phosphotyrosine. Results of these experiments suggest that tyrosine protein phosphorylation in response to the fertilizing sperm may be involved in initiating DNA synthesis in the 1-cell embryo, as well as converting a meiotic cell cycle to a mitotic one.  相似文献   

8.
HL-60 cells were incubated with [32P]-Pi in order to label endogenous phosphoproteins in situ. These were then resolved via two-dimensional electrophoresis and autoradiograms were made from the gels. A comparison of autoradiograms made from retinoic-acid-differentiated cells with those made from control cells revealed a small number of phosphoproteins whose labeling was enhanced in differentiated cells. Incubating HL-60 cells with [35S]-methionine revealed that RA induced the synthesis of one of these proteins, (53 kDa, pl 4.8) although not to a degree sufficient to account for the increased phosphate labeling observed in differentiated cells. Difluoromethylornithine (DFMO), which arrests HL-60 cell proliferation without inducing differentiation, had no effect on endogenous protein phosphorylation. Treatment of DFMO-arrested cells with retinoic acid, however, increased the phosphorylation of the proteins and resulted in differentiation of the cells. Densitometric analysis of autoradiograms made from two-dimensional gels revealed that the phosphorylation of the 53-kDa, pl 4.8 protein was significantly elevated in cells exposed to RA for as little as 12 hours, i.e., before the cells were committed to differentiate and before a significant increase in the number of phenotypically mature cells was observed. It therefore appears that this protein may be an intermediate in the retinoic-acid-induced differentiation process.  相似文献   

9.
10.
A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration (Larrivee and Grafstein, 1989). (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To deterine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but32P labeling was reduced only by 50% or less. (3) When32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.Abbreviations SDS sodium lauryl sulfate - GAP growth associated protein - TCA trichloracetic acid - kD kilodalton  相似文献   

11.
Endogenous phosphorylation of intact cells was studied with four mouse, hamster and human cell lines using [gamma-32P]ATP and [gamma-32P]GTP as exogenous substrates. With all four cell lines distinct differences in the phosphoprotein patterns could be demonstrated for cells grown in suspension culture compared to cells grown in monolayers. Two major, apparently ubiquitous phosphoproteins with molecular weights of 135 000 (128 000 in HeLa cells) and 105 000, representing up to 60% of total phosphorylation, were phosphorylated only in cells grown in suspension. These phosphoproteins and the kinase(s) were located on the surface of the suspension cells. Evidence showed that phosphorylation was apparently not a true endogenous reaction, that rather it occurred by cell-cell collision, showing exponentially increasing 32P incorporation with increasing cell population density. Phosphorylation of pp135 and pp105 was established with ATP as well as with GTP and was not dependent on cyclic nucleotides cyclic AMP, cyclic GMP and cyclic CMP. The substrate-attached cells of all four cell lines have protein kinases on the cell surface. The lack of pp135 and pp105 phosphorylation may be due to the fact that these phosphoproteins are not expressed at all on the surface of substrate-attached cells or that these phosphoproteins are already fully phosphorylated.  相似文献   

12.
Compaction, occurring at the eight-cell stage of mouse development, is the process of cell flattening and polarisation by which cellular asymmetry is first established. Changes in the pattern of protein phosphorylation have been correlated with this early event of development (TL Bloom, J McConnell: Mol Reprod Dev 26:199-210, 1990). In the study reported here, groups of embryos were treated in ways known to affect particular features of compaction and were then labeled with [32P]orthophosphate; the phosphoproteins obtained were examined following electrophoresis in one and two dimensions. Four-cell embryos were treated with protein synthesis inhibitors, which advance cell flattening. This treatment resulted in only minor differences from the phosphoprotein profile of untreated four-cell embryos. Inhibition of protein synthesis at the eight-cell stage has little effect on cell flattening or polarisation. However, some phosphoproteins that are observed normally in eight-cell but not in four-cell embryos were no longer detectable if labeling took place in the presence of protein synthesis inhibitors. Eight-cell embryos incubated in phorbol 12-myristate 13-acetate, which disrupts various features of compaction, showed a relative increase in the phosphorylation of a group of phosphoprotein spots associated with the eight-cell but not with the four-cell stage. Embryos incubated in Ca2(+)-free medium, which prevents intercellular flattening and delays polarisation, showed a relative decrease in the phosphorylation of the same group of phosphoprotein spots. The behaviour of these phosphoproteins may therefore be correlated with some of the features of compaction.  相似文献   

13.
In order to investigate the role of protein phosphorylation in the early differentiative events of mouse preimplantation development, timed groups of embryos of various stages were incubated in medium containing [32P]orthophosphate and harvested immediately after labelling or following a chase period. The phosphoproteins obtained were separated by electrophoresis in one and two dimensions. While some of the phosphoproteins found were common to all the stages examined, the detection of many depended on both the combination of pulse-labelling and chase periods used and on the developmental stage examined. Some phosphoproteins were only found in compacted 8-cell embryos, a correlation which suggests a possible link with the post-translational mechanisms which underlie compaction.  相似文献   

14.
Phosphoproteins which arise from incubation of Streptococcus salivarius ATCC25975 crude extracts with [32P]phosphoenolpyruvate and [gamma-32P]ATP, were separated and detected by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. These procedures were carried out using the methodology that has been developed to allow for the detection of phosphoproteins containing 1-P-histidinyl and 3-P-histidinyl residues, and also to distinguish between these and phosphoproteins containing acid-stable phosphoamino acids such as phosphoserine, phosphothreonine, and phosphotyrosine. Extracts of cells which had been grown with various sugars as carbon sources were investigated to determine both constitutive and inducible phosphoproteins. No evidence was found for phosphoproteins specifically induced by a sugar, and in particular no evidence was found for any IIIsugar phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Incubation with [gamma-32P]ATP showed that histidine-containing phosphocarrier protein (HPr) of the PTS could be phosphorylated to give both acid-stable and acid-labile phosphoamino acid residues. The acid-labile ATP-dependent phosphorylation activity was activated by glucose-6-P and appeared to produce a 3-P-histidinyl residue in HPr.  相似文献   

15.
Two-dimensional analysis of proteins phosphorylated in E. coli cells   总被引:1,自引:0,他引:1  
Proteins phosphorylated in Escherichia coli cells were analyzed by the O'Farrell two-dimensional gel technique. Cytoplasmic and ribosomal fractions were studied separately. Double labeling with [32P]orthophosphate and [35S]sulfate followed by selective autoradiographic detection of each radioisotope allowed precise location of 12 major phosphoproteins on the total protein pattern of bacteria. Both the molecular mass and isoelectric point of these phosphoproteins were determined.  相似文献   

16.
I Schvartz  O Ittoop  G Davidai  E Hazum 《Peptides》1992,13(1):159-163
The mitogenic activity of endothelin (ET) was studied in osteoblast-like cells, MC3T3-E1. [3H] Thymidine incorporation induced by ET was markedly lower than that of platelet-derived growth factor (PDGF). ET synergistically stimulated [3H] thymidine incorporation induced by PDGF with an apparent ED50 value of 2.5 nM. Treatment of MC3T3-E1 cells with ET and subsequent immunoblotting of the cell extracts with antiphosphotyrosine antibodies followed by labeling with [125I] protein A resulted in the identification of several phosphotyrosine-containing proteins. The intensity of these labeled phosphoproteins significantly increased when the cells were treated with a combination of ET and PDGF. Genistein, an inhibitor of tyrosine kinases, blocked [3H] thymidine incorporation as well as protein tyrosine phosphorylation stimulated by either ET, PDGF or the combination of ET and PDGF. These findings suggest that tyrosine phosphorylation could play a role in the comitogenic activity of ET in osteoblast-like cells.  相似文献   

17.
Endogenous phosphorylation was studied with highly purified fractions of the plasma membrane and the endoplasmic reticulum of SV40-transformed mouse fibroblasts using [gamma-32P]ATP and [gamma-32P]GTP as precursors. With ATP maximum overall incorporation of 32P into both membrane fractions occurred at pH 7.8 in the presence of 10 mM MgCl2 after incubation for 1 min. GTP could be utilized only by the plasma membrane fraction showing maximum incorporation of 32P at pH 7.8 and 10 mM MgCl2 after incubation for 3 min. The pattern of phosphoproteins of the plasma membrane is represented by more than 15 proteins whereas the endoplasmic reticulum essentially contained only one phosphorylated component of 35 000 molecular weight. The comparison of ATP- and GTP-specific phosphorylation of the plasma membrane revealed GTP to be a less efficient precursor yielding a similar phosphoprotein pattern with one significant difference: the GTP-specific main component exhibited a molecular weight of about 100 000 and the ATP-specific main component a molecular weight of 110 000. The relative distribution of individual phosphoproteins in the pattern of the plasma membrane was dependent on pH but not on MgCl2 concentration or time of incubation. Increasing concentrations of plasma membrane protein altered the patterns of phosphoproteins dramatically: At high protein concentrations the ATP-specific main component (Mr = 110 000) was no more phosphorylated whereas with GTP the main component Mr = 100 000 was essentially the sole phosphorylated protein.  相似文献   

18.
In an attempt to elucidate the intracellular events regulating the proliferation of endothelial cells (EC), we have compared the phosphorylation events in membranes prepared from proliferating (sparse) and quiescent (confluent) EC. Triton-solubilized membranes from sparse and confluent EC were incubated at pH 6.5 in the presence of divalent cations and [32P]ATP. Membrane proteins were then separated by SDS-PAGE and the radiolabeled phosphoproteins visualized by autoradiography. The overall kinase activity per milligram protein was 1.7 +/- 0.2-fold greater in membranes prepared from proliferating than from quiescent cells. The extent of phosphorylation was dramatically elevated in sparse over confluent samples for four phosphoproteins having the following approximate molecular masses: 180, 100, 97, and 55 kDa. The 180 and 100 kDa phosphoproteins exhibited 3.6- and 7.4-fold higher labeling, respectively, in sparse than in confluent membranes and both were phosphorylated on serine residues exclusively. The 97 kDa phosphoprotein was 11.6-fold higher in sparse membranes and contained both phosphoserine (p-ser) and phosphotheronine (p-thr), the latter comprising 61% of the radioactivity. The 55 kDA phosphoprotein contained 62% p-ser, 16% p-thr, and 22% phosphotyrosine (p-tyr) and was 2.3-fold higher in sparse membranes. Of these four phosphoproteins, only the 55 kDa protein was phosphorylated in confluent samples to an appreciable degree. Whereas the p-ser and p-thr content of the 55 kDa band increased moderately in sparse vs. confluent sample (1.8-fold increase), the tyrosine residues of this protein in sparse membranes were radiolabeled to a much greater extent relative to confluent membranes (5.4-fold increase). Analysis of the cofactor requirements of the FC membrane kinase(s) revealed that Mn2+ is the optimum cofactor and that Mg2+ can replace Mn2+ only for the kinase acting on the 100 kDa band. This suggests the presence of multiple EC membrane kinases. In the presence of both cofactors, the phosphorylation pattern is similar to the pattern obtained with Mn2+ alone. The kinase activity acting on all four phosphoproteins was independent of Ca2+, cAMP, cGMP, and phorbol 12-myristate 13-acetate. The mechanism responsible for the difference in kinase activity of proliferating vs. quiescent cells was not due to an inhibitor or enhanced phosphatase activity in confluent cells; the phosphorylation patterns obtained with sparse solubilized membranes and a mixture of sparse and confluent solubilized membranes were similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The phosphorylation of specific substrates of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was examined in striatal synaptosomal cytoplasm. The phosphoprotein substrata were termed group C phosphoprotems and were divided into two subgroups: group C1 phosphoproteins (P83, P45A, P21 and P18) were found in both cytoplasm and synaptosomal membranes and, although stimulated by phosphatidylserine, only required exogamous calcium for their labeling; group C2 phosphoproteins (P120, P96, P21.5, P18.5 and P16) were found predominantly in the cytoplasm and were absolutely dependent upon exogenous calcium and phosphatidylserme for their labeling. Several criteria were used to identify these proteins as specific protein kinase C substrates: (a) their phosphorylation was stimulated to a greater extent by Ca2+ /phosphatidylserine/diolein than by Ca2+ alone or Cal2+ /calmodulin (group C1) or was completely dependent upon Ca2+ /phosphatdylserine/diolein (group C2); (b) supermaximal concentrations of the cAMP-dependent protein kinase inhibitor were without effect; (c) their phosphorylation was stimulated by oleic acid, which selectively activates protein kinase C in the absence of Ca2+; (d) NaCl, which inhibited cAMP- and Ca2+/calmodulindependent phosphorylation, slightly increased phosphorylation of group C1 and slightly decreased phosphorylation of group C2 phosphoproteins. Maximal phosphorylation of P96 and other group C phosphoproteins occurred within 60 s and was followed by a slow decay rate while substrata of calmodulin-dependent protein kinase were maximally labeled within 20–30 s and rapidly dephosphorylated. The phosphorylation of all group C phosphoproteins was inhibited by the calcium channel agomst BAY K 8644, however, group C2 phosphoproteins were considerably more sensitive. The IC50 for inhibition of P96 labeling was 19 μM. but for P83 was 190 μM. Group B phosphoproteins were also slightly inhibited, and the IC50 for P63 was 290 μM. No inhibitory effects of another dihydropyridine, nifedipine, or of verapamil were detected in this concentration range. BAY K 8644 did not displace [3H]phorbol-12,13-dibutyrate binding, nor was the inhibition decreased by increasing phosphatidylserine concentrations. BAY K 8644 had no effect on the rate of dephosphorylation of any phosphoprotein, indicating that it is unlikely to inhibit a protein phosphatase. BAY K 8644 may, therefore, prove to be a valuable tool for discriminating protein kinase C activity from the activity of other protein kinases. We conclude that BAY K 8644 interacts either with a specific subgroup of protein kinase C substrata or with one of two putative forms of protein kinase C.  相似文献   

20.
Rat liver soluble proteins were phosphorylated by endogenous protein kinase with [gamma-32P]ATP. Proteins were separated in dodecyl sulphate slab gels and detected with the aid of autoradiography. The relative role of cAMP-dependent, cAMP-independent and Ca2+-activated protein kinases in the phosphorylation of soluble proteins was investigated. Heat-stable inhibitor of cAMP-dependent protein kinase inhibits nearly completed the phosphorylation of seven proteins, including L-type pyruvate kinase. The phosphorylation of eight proteins is not influenced by protein kinase inhibitor. The phosphorylation of six proteins, including phosphorylase, is partially inhibited by protein kinase inhibitor. These results indicate that phosphoproteins of rat liver can be subdivided into three groups: phosphoproteins that are phosphorylated by (a) cAMP-dependent protein kinase or (b) cAMP-independent protein kinase; (c) phosphoproteins in which both cAMP-dependent and cAMP-independent protein kinase play a role in the phosphorylation. The relative phosphorylation rate of substrates for cAMP-dependent protein kinase is about 15-fold the phosphorylation rate of substrates for cAMP-independent protein kinase. The Km for ATP of cAMP-dependent protein kinase and phosphorylase kinase is 8 microM and 38 microM, respectively. Ca2+ in the micromolare range stimulates the phosphorylation of (a) phosphorylase, (b) a protein with molecular weight of 130 000 and (c) a protein with molecular weight of 15 000. The phosphate incorporation into a protein with molecular weight of 115 000 is inhibited by Ca2+. Phosphorylation of phosphorylase and the 15 000-Mr protein in the presence of 100 microM Ca2+ could be completely inhibited by trifluoperazine. It can be concluded that calmodulin is involved in the phosphorylation of at least two soluble proteins. No evidence for Ca2+-stimulated phosphorylation of subunits of glycolytic or gluconeogenic enzymes, including pyruvate kinase, was found. This indicates that it is unlikely that direct phosphorylation by Ca2+-dependent protein kinases is involved in the stimulation of gluconeogenesis by hormones that act through a cAMP-independent, Ca2+-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号