首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circalunidian hypothesis that tidal rhythms in coastal animals are controlled by two lunar-day (c. 24.8 h) oscillators coupled in antiphase is challenged. Rhythmic locomotor activity patterns of the shore crab Carcinus maenas, and probably of some other species too, are more economically explained by interacting circadian (c. 24 h) and true circatidal (c. 12.4 h) physiological oscillators. A testable hypothesis is proposed that combines a circadian promotor and a circatidal inhibitor of locomotor activity.  相似文献   

2.
In response to my advocacy of a circatidal/circadian model to explain behavioral rhythms in Carcinus (1), Palmer (2) raises questions concerning my initial premise, the nature of one of my model parameters, and the form of data analysis that I used. These questions are responded to and it is restated that the circatidal/circadian model of clock control adequately explains characteristics of free-running behavioral rhythms in Carcinus and probably in some other coastal animals, purported to be explained only by the recently formulated circalunidian hypothesis (3). (Chronobiology International, 14(4), 427–430, 1997)  相似文献   

3.
In the laboratory, horseshoe crabs express a circadian rhythm of visual sensitivity as well as daily and circatidal rhythms of locomotion. The major goal of this investigation was to determine whether the circadian clock underlying changes in visual sensitivity also modulates locomotion. To address this question, we developed a method for simultaneously recording changes in visual sensitivity and locomotion. Although every animal (24) expressed consistent circadian rhythms of visual sensitivity, rhythms of locomotion were more variable: 44% expressed a tidal rhythm, 28% were most active at night, and the rest lacked statistically significant rhythms. When exposed to artificial tides, 8 of 16 animals expressed circatidal rhythms of locomotion that continued after tidal cycles were stopped. However, rhythms of visual sensitivity remained stable and showed no tendency to be influenced by the imposed tides or locomotor activity. These results indicate that horseshoe crabs possess at least two biological clocks: one circadian clock primarily used for modulating visual sensitivity, and one or more clocks that control patterns of locomotion. This arrangement allows horseshoe crabs to see quite well while mating during both daytime and nighttime high tides.  相似文献   

4.
The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in the circadian and circatidal rhythms of A. asahinai using RNAi. After injection of double-stranded RNA of per, most crickets did not show the circadian modulation of activity but the circatidal rhythm persisted without a significant difference in the period from controls. Thus, per is functionally involved in the circadian rhythm but plays no role, or a less important role, in the circatidal rhythm. We conclude that the circatidal rhythm in A. asahinai is controlled by a circatidal clock whose molecular mechanism is different from that of the circadian clock.  相似文献   

5.
American horseshoe crabs (Limulus polyphemus) exhibit clear circadian rhythms of visual sensitivity in the laboratory and in the field they exhibit seasonal patterns of mating behavior that are closely associated with the tides. Recent reports suggest that Limulus locomotor activity may be controlled by endogenous circadian and/or circatidal clocks and that light:dark (LD) cycles may affect the rhythmic output of both of these clocks. In this study, we examined locomotor behavior in the laboratory to determine the extent of this endogenous activity and to examine the influence of LD cycles on these rhythms. Thirty-three L. polyphemus were captured during the breeding season and their activity was monitored with activity boxes and “running wheels” in seawater kept at constant temperature and salinity. Activity patterns were analyzed using visual inspection of actograms and Chi-square and Lomb-Scargle periodograms. Overall, 36% of the animals was significantly more active during L, while only 12% was more active during D (52% showed no preference). Circatidal rhythms were observed in LD in 67% of the horseshoe crabs. Surprisingly, LD cycles appeared to synchronize these rhythms at times. In DD, the majority of animals tested (63%) exhibited circatidal rhythms that persisted for at least seven days. Overall, the results demonstrate that an endogenously controlled tidal rhythm of locomotion operates during, and significantly after, the breeding season in this species. In addition, the present results are consistent with the presence of circalunidian oscillators controlling these rhythms.  相似文献   

6.
In many seasonally breeding rodents, reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. We compared LD- and SD-housed animals and show that the waveform of SCN expression for three circadian clock genes (Per1, Per2, and Cry2) is modified by photoperiod. In SD-refractory (SD-R) animals, SCN and melatonin rhythms remain locked to SD, reflecting ambient photoperiod, despite LD-like physiology. In peripheral oscillators, Per1 and Dbp rhythms are also modified by photoperiod but, in contrast to the SCN, revert to LD-like, high-amplitude rhythms in SD-R animals. Our data suggest that circadian oscillators in peripheral organs participate in photoperiodic time measurement in seasonal mammals; however, circadian oscillators operate differently in the SCN. The clear dissociation between SCN and peripheral oscillators in refractory animals implicates intermediate factor(s), not directly driven by the SCN or melatonin, in entrainment of peripheral clocks.  相似文献   

7.
Individuals of the shore crab Carcinus maenas were exposed to artificial cycles, applied in tidal antiphase, of pairs of the three major environmental variables that entrain circatidal rhythmicity in this species: salinity, temperature, and hydrostatic pressure. During entrainment, the observed locomotor activity patterns were dominated by exogenous responses to high pressure, low temperature, or low salinity. In subsequent constant conditions, many of the crabs showed bimodal circatidal rhythms, with peaks phased to the times of expected high-tide characteristics of high pressure, low temperature, or high salinity. Similar bimodal rhythms were induced by exposing freshly captured crabs, with free-running circatidal rhythms, to tidal antiphase cycles of each of the three environmental variables applied individually. The hypothesis that circatidal rhythmicity in this species is controlled by at least two separate circatidal oscillators, with differential sensitivities to specific cyclical environmental variables, is discussed.  相似文献   

8.
Another place, another timer: Marine species and the rhythms of life   总被引:1,自引:0,他引:1  
The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves.  相似文献   

9.
《Chronobiology international》2013,30(5-6):383-391
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

10.
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

11.
B Rusak 《Federation proceedings》1979,38(12):2589-2595
The identification of a direct retinohypothalamic tract (RHT) terminating in the supra-chiasmatic nuclei (SCN) has focused attention on the role of these structures in the entrainment and generation of circadian rhythms in mammals. Light effects on circadian rhythms are mediated by both the RHT and portions of the classical visual system. The complex interactions of these systems are reflected both in their direct anatomical connections and in the functional changes in entrainment produced by interruption of either set of projections. Destruction of the RHT/SCN eliminated both normal entrainment and normal free-running circadian rhythms. No circadian rhythms has survived SCN ablation in rodents, but a variety of non-circadian cycles can be generated by lesioned animals. The complex behavioral patterns produced by SCN-lesioned hamsters suggest that circadian oscillators continue to function in these animals, but that their activity is no longer integrated into a single circadian framework. The available evidence indicates that the mammalian pacemaking system comprises a set of independent oscillators normally regulated by the SCN and by light information that is transmitted via several retinofugal pathways.  相似文献   

12.
Rats possess a system of circadian oscillators that permit entrainment of circadian activity rhythms independently to 24 hr cycles of light-dark and food access. The nature of interactions between food- and light-entrainable oscillators was examined by observing the generation and persistence of food-entrained circadian rhythms in rats whose light-entrainable rhythms were eliminated by long-term exposure to constant light. Most of these rats showed a delayed generation of food-entrained rhythms and only one of eight animals showed persistence of food associated rhythms during a 4-day food deprivation test. Rats whose light-entrainable rhythms are eliminated by suprachiasmatic nuclei ablation show, in contrast, normal generation and persistence of food-entrained rhythms. The results suggested a disruptive influence of constant light on non-photic entrainment, possibly due to coupling forces between damped light-entrainable oscillators and the food-entrainable oscillators.  相似文献   

13.
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock.  相似文献   

14.
Circadian rhythms in mammals are regulated by a system of endogenous circadian oscillators (clock cells) in the brain and in most peripheral organs and tissues. One group of clock cells in the hypothalamic SCN (suprachiasmatic nuclei) functions as a pacemaker for co-ordinating the timing of oscillators elsewhere in the brain and body. This master clock can be reset and entrained by daily LD (light-dark) cycles and thereby also serves to interface internal with external time, ensuring an appropriate alignment of behavioural and physiological rhythms with the solar day. Two features of the mammalian circadian system provide flexibility in circadian programming to exploit temporal regularities of social stimuli or food availability. One feature is the sensitivity of the SCN pacemaker to behavioural arousal stimulated during the usual sleep period, which can reset its phase and modulate its response to LD stimuli. Neural pathways from the brainstem and thalamus mediate these effects by releasing neurochemicals that inhibit retinal inputs to the SCN clock or that alter clock-gene expression in SCN clock cells. A second feature is the sensitivity of circadian oscillators outside of the SCN to stimuli associated with food intake, which enables animals to uncouple rhythms of behaviour and physiology from LD cycles and align these with predictable daily mealtimes. The location of oscillators necessary for food-entrained behavioural rhythms is not yet certain. Persistence of these rhythms in mice with clock-gene mutations that disable the SCN pacemaker suggests diversity in the molecular basis of light- and food-entrainable clocks.  相似文献   

15.
Wideman CH  Murphy HM  Nadzam GR 《Peptides》2000,21(6):811-816
Vasopressin-containing Long-Evans and vasopressin-deficient Brattleboro rats were maintained in individual cages while telemetered activity (AC) and body temperature (BT) data were collected. Rats were initially exposed to a 12 h/12-h light/dark cycle (photic zeitgeber) and were allowed ad-libitum access to food and water. Daily feeding, care, and handling (nonphotic zeitgebers) occurred at the beginning of the second hour of the dark cycle. After a 14-day habituation period, rats were subjected to continuous light (LL) or dark (DD) and nonphotic cues were presented irregularly. During the habituation period, both strains exhibited clear 24-h circadian rhythms of AC and BT. In LL or DD, photic cues were removed and nonphotic cues were presented irregularly. There was a shift in the rhythm for Long-Evans animals to 26 h for both AC and BT in LL and 24.6 h in DD. Feeding, care, and handling were seen as minor artifact. In Brattleboro rats, although there were robust 26-h and 24.6-h circadian rhythms of AC in the LL and DD, respectively, BT data were inconsistent and showed sporadic fluctuations. In the BT rhythm of Brattleboro animals, strong peaks were associated with feeding, care, and handling times and trough periods were characterized by a dramatic drop in temperature. This experiment demonstrates that AC and BT are controlled by separate oscillators. In addition, the importance of vasopressinergic fibers in the control of circadian rhythms of BT is evidenced by the loss of circadian rhythms in animals lacking these functional fibers when exposed to free-running paradigms where there is no entrainment of photic or nonphotic oscillators.  相似文献   

16.
The circadian clock in the suprachiasmatic nucleus of the hypothalamus (SCN) contains multiple autonomous single-cell circadian oscillators and their basic intracellular oscillatory mechanism is beginning to be identified. Less well understood is how individual SCN cells create an integrated tissue pacemaker that produces a coherent read-out to the rest of the organism. Intercellular coupling mechanisms must coordinate individual cellular periods to generate the averaged, genotype-specific circadian period of whole animals. To noninvasively dissociate this circadian oscillatory network in vivo, we (T.C. and A.D.-N.) have developed an experimental paradigm that exposes animals to exotic light-dark (LD) cycles with periods close to the limits of circadian entrainment. If individual oscillators with different periods are loosely coupled within the network, perhaps some of them would be synchronized to the external cycle while others remain unentrained. In fact, rats exposed to an artificially short 22 hr LD cycle express two stable circadian motor activity rhythms with different period lengths in individual animals. Our analysis of SCN gene expression under such conditions suggests that these two motor activity rhythms reflect the separate activities of two oscillators in the anatomically defined ventrolateral and dorsomedial SCN subdivisions. Our "forced desychronization" protocol has allowed the first stable separation of these two regional oscillators in vivo, correlating their activities to distinct behavioral outputs, and providing a powerful approach for understanding SCN tissue organization and signaling mechanisms in behaving animals.  相似文献   

17.
Summary We have tested the hypothesis that the circadian oscillators in the eyes ofAplysia are coequal driver oscillators for the circadian locomotor rhythm. Three predictions based on this hypothesis were tested. Prediction 1: at a time when the phase difference between the eye rhythms is small, the amplitude of the locomotor rhythm in two eyed animals will be as great or greater than the amplitude in one eyed animals. Prediction 2: the amplitude of the locomotor rhythm of two eyed animals will decline under conditions in which the two eye rhythms become out of phase with each other. Prediction 3: the form of the locomotor rhythm will broaden or become biphasic in two eyed animals when the two eye rhythms become out of phase with each other.None of the predictions was confirmed. One eyedAplysia had higher amplitude locomotor rhythms than two eyedAplysia, even under conditions in which the two eye rhythms were probably not far out of phase with each other. There was no tendency for the amplitude of the locomotor rhythm of two eyed animals to decline under circumstances in which the phase difference between the two eye rhythms changes from less than 4 h to as much as 11.5 h. There was no tendency in two eyed animals for the locomotor rhythm to broaden or become biphasic as the eye rhythms became more out of phase with each other.The results led us to reject the hypothesis that the eyes are co-equal drivers for the locomotor rhythm. The ocular influence on locomotion is more likely to be mediated via mechanisms in the central nervous system that do not faithfully conserve the phase of the eye rhythms. One possibility is that the driver is a third circadian oscillator that interacts with the two eye oscillators.Abbreviations CAP compound action potentials - CC constant conditions - CT circadian time - DO driver oscillator - EO eye oscillator - RSD relative standard deviations (see Methods)  相似文献   

18.
19.
Mammalian circadian organization is believed to derive primarily from circadian oscillators within the hypothalamic suprachiasmatic nuclei (SCN). The SCN drives circadian rhythms of a wide array of functions (e.g., locomotion, body temperature, and several endocrine processes, including the circadian secretion of the pineal hormone melatonin). In contrast to the situation in several species of reptiles and birds, there is an extensive literature reporting little or no effect of pinealectomy on mammalian circadian rhythms. However, recent research has indicated that the SCN and circadian systems of several mammalian species are highly sensitive to exogenous melatonin, raising the possibility that endogenous pineal hormone may provide feedback in the control of overt circadian rhythms. To determine the role of the pineal gland in rat circadian rhythms, the effects of pinealectomy on locomotor rhythms in constant light (LL) and constant darkness (DD) were studied. The results indicated that the circadian rhythms of pinealectomized rats but not sham-operated controls dissociated into multiple ultradian components in LL and recoupled into circadian patterns only after 12-21 days in DD. The data suggest that pineal feedback may modulate sensitivity to light and/or provide coupling among multiple circadian oscillators within the SCN.  相似文献   

20.
Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them. The model successfully simulated the behavior of human circadian rhythms in response to forced rest-activity schedules under free-run situations: the sleep-wake rhythm is reentrained with the circadian pacemaker after release from the schedule, there is a critical period for the schedule to fully entrain the sleep-wake rhythm, and the forced rest-activity schedule can entrain the circadian pacemaker with the aid of exercise. The behavior of human circadian rhythms was reproduced with variations in only a few model parameters. Because conventional models are unable to reproduce the experimental results concerned here, it was suggested that the feedback mechanisms included in this model underlie nonphotic entrainment of human circadian rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号