首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An empirically based mathematical model is presented which can simulate the major features of the interactions between ammonium and nitrate transport and assimilation in phytoplankton. The model (ammonium-nitrate interaction model), which is configured to simulate a generic microalga rather than a specified species, is constructed on simplified biochemical bases. A major requirement for parametrization is that the N:C ratio of the algae must be known and that transport and internal pool sizes need to be expressed per unit of cell C. The model uses the size of an internal pool of an early organic product of N assimilation (glutamine) to regulate rapid responses in ammonium-nitrate interactions. The synthesis of enzymes for the reduction of nitrate through to ammonium is induced by the size of the internal nitrate pool and repressed by the size of the glutamine pool. The assimilation of intracellular ammonium (into glutamine) is considered to be a constitutive process subjected to regulation by the size of the glutamine pool. Longer term responses have been linked to the nutrient history of the cell using the N:C cell quota. N assimilation in darkness is made a function of the amount of surplus C present and thus only occurs at low values of N:C. The model can simulate both qualitative and quantitative temporal shifts in the ammonium-nitrate interaction, while inclusion of a derivation of the standard quota model enables a concurrent simulation of cell growth and changes in nutrient status. <br>  相似文献   

2.
The effects of Fe deficiency on the marine cyanobacterium Synechococcus sp. were examined in batch cultures grown on nitrate or ammonium as a sole nitrogen source under two different irradiances. Fe-stressed cells showed lower chlorophyll a content and cellular C and N quotas. Light limitation increased the critical iron concentration below which both suppression of growth rate and changes in cellular composition were observed. At a limiting irradiance (26 μmol.m−2.s−1), this critical value was ∼10 nM, a 10 times increase compared to high-light cultures. Moreover, at low light the cellular chlorophyll a concentration was higher than at saturating light (110 μmol.m−2.s−1), this difference being most pronounced under Fe-stressed conditions. Cells grown on ammonium showed a lower half-saturation constant for Fe (Ks) compared to cells grown on nitrate, indicating Synechococcus sp. has the ability to grow faster on ammonium than on nitrate in a low Fe environment at high light. Consequently, in high-nutrient and low-chlorophyll regions where Fe limits new production, cyanobacteria most likely grow on regenerated ammonium, which requires less energy for assimilation. The Ks for growth on Fe at low light was significantly higher than at high light compared with the cells grown on the same N source, suggesting the cells require more Fe at low light. Therefore, if cells that are already Fe-limited also become light-limited, their iron stress level will increase even more. For cyanobacteria this is the first report of a study combining the interactions of Fe limitation, light limitation, and nitrogen source (NO3 vs. NH4+).  相似文献   

3.
The preference of phytoplankton for ammonium over nitrate has traditionally been explained by the greater metabolic cost of reducing oxidized forms of nitrogen. This “metabolic cost hypothesis” implies that there should be a growth disadvantage on nitrate compared to ammonium or other forms of reduced nitrogen such as urea, especially when light limits growth, but in a variety of phytoplankton taxa, this predicted difference has not been observed. Our experiments with three strains of marine Synechococcus (WH7803, WH7805, and WH8112) did not reveal consistently faster growth (cell division) on ammonium or urea as compared to nitrate. Urease and glutamine synthetase (GS) activities varied with nitrogen source in a manner consistent with regulation by cellular nitrogen status via NtcA (rather than by external availability of nitrogen) in all three strains and indicated that each strain experienced some degree of nitrogen insufficiency during growth on nitrate. At light intensities that strongly limited growth, the composition (carbon, nitrogen, and pigment quotas) of WH7805 cells using nitrate was indistinguishable from that of cells using ammonium, but at saturating light intensities, cellular carbon, nitrogen, and pigment quotas were significantly lower in cells using nitrate than ammonium. These and similar results from other phytoplankton taxa suggest that a limitation in some step of nitrate uptake or assimilation, rather than the extra cost of reducing nitrate per se, may be the cause of differences in growth and physiology between cells using nitrate and ammonium.  相似文献   

4.
The purpose of this study was to determine whether the addition of iron alone or in combination with nitrate affects growth and photosynthesis of the scleractinian coral, Stylophora pistillata, and its symbiotic dinoflagellates. For this purpose, we used three series of two tanks for a 3-week enrichment with iron (Fe), nitrate (N) and nitrate+iron (NFe). Two other tanks were kept as a control (C). Stock solutions of FeCl(3) and NaNO(3) were diluted to final concentrations of 6 nM Fe and 2 &mgr;M N and continuously pumped from batch tanks into the experimental tanks with a peristaltic pump. Results obtained showed that iron addition induced a significant increase in the areal density of zooxanthellae (ANOVA, p=0.0013; change from 6.3+/-0.7x10(5) in the control to 8.5+/-0.6x10(5) with iron). Maximal gross photosynthetic rates normalized per surface area also significantly increased following iron enrichment (ANOVA, p=0.02; change from 1.23+/-0.08 for the control colonies to 1.81+/-0.24 &mgr;mol O(2) cm(-2) h(-1) for the iron-enriched colonies). There was, however, no significant difference in the photosynthesis normalized on a per cell basis. Nitrate enrichment alone (2 &mgr;M) did not significantly change the zooxanthellae density or the rates of photosynthesis. Nutrient addition (both iron and nitrogen) increased the cell-specific density of the algae (CSD) compared to the control (G-test, p=0.3x10(-9)), with an increase in the number of doublets and triplets. CSD was equal to 1.70+/-0.04 in the Fe-enriched colonies, 1.54+/-0.12 in the N- and NFe-enriched colonies and 1.37+/-0.02 in the control. Growth rates measured after 3 weeks in colonies enriched with Fe, N and NFe were 23%, 34% and 40% lower than those obtained in control colonies (ANOVA, p=0.011).  相似文献   

5.
P. A. Edge  T. R. Ricketts 《Planta》1978,138(2):123-125
Platymonas striata Butcher displays significant levels of glutamate synthase (GS) (EC 2.6.1.53) and glutamine synthetase (GOGAT) (EC 6.3.1.2.), but very low levels of glutamate dehydrogenase (GDH) (EC 1.4.1.4). This suggests that the GS/GOGAT pathway is important for nitrogen assimilation. The in vitro rates of enzyme activity can however only account for about 10% of the in vivo rates of nitrogen assimilation. Nitrogen-starvation reduced GS activity to undetectable levels. On nitrate or ammonium ion refeeding the cellular GS activity was rapidly restored, and reached levels of 56% and 91% greater than the unstarved values 24h after refeeding nitrate or ammonium respectively.Abbreviations NAR nitrate reductase - NIR nitrate reductase  相似文献   

6.
P.A. Edge  T. R. Ricketts 《Planta》1977,136(2):159-162
Studies on the mean cellular carbohydrate contents of Platymonas striata Butcher under conditions of nitrogen-starvation, and after refeeding these starved cultures with either nitrate or ammonium ions (growing under continuous illumination or with an alternating light/dark regime) have shown that nitrogen-starved cells accumulated abnormal amounts of cellular carbohydrate and that nitrogen refeeding produced a marked drop in the cellular carbohydrate. Cells grown in a light/dark regime accumulated less carbohydrates than those grown in continuous light. The mean cellular carbohydrate levels 16 h after nitrogen refeeding were still much in excess of those of cells grown with normal nutrition. It was therefore suggested that the differences in nitrogen uptakes in this period — when comparing either the uptake of cells grown in continuous light with that of cells grown in a light/dark regime; or when comparing the uptakes of cells presented with either nitrate or ammonium ions and grown in a light/dark regime —cannot be directly due to shortages of carbohydrate for the provision of carbon skeletons for nitrogen assimilation.  相似文献   

7.
The rate of photosynthesis and nitrate uptake are related to the iron concentration in the medium for the green alga Scenedesmus quadricauda (Turp.) Breb. Increased iron leads to changes in chlorophyll a concentration, carbon fixation rate per chlorophyll a and in vivo fluorescence characteristics. These parameters all indicate that the efficiency of photosynthesis is related to iron nutrition. Nitrate uptake rate is also a function of both Fe and light Iron-limited cultures had decreased nitrate uptake at low light whereas ammonium uptake was relatively constant. Iron-limited cultures fixed about twice as much carbon into protein relative to the total carbon fixed. Iron plays a crucial role in the bioenergetics of carbon and nitrogen metabolism and may be important in controlling patterns of productivity.  相似文献   

8.
Raab TK  Terry N 《Plant physiology》1995,107(2):575-585
Sugar beets (Beta vulgaris L. cv F58-554H1) were grown hydroponically in a 16-h light, 8-h dark period (photosynthetic photon flux density of 0.5 mmol m-2 s-1) for 4 weeks from sowing in half-strength Hoagland nutrient solution containing 7.5 mM nitrate. Half of the plants were then transferred to 7.5 mM ammonium N; the rest remained in solution with 7.5 mM nitrate N. Upon transfer from nitrate to ammonium, the total N concentration decreased sharply in the fibrous roots and petiole/midribs and increased substantially in the leaf blades. This was because of the decreased nitrate concentrations in fibrous roots and petioles and a concomitant increase in amino acid/amide-N and protein N in leaf blades. Sugar beets acclimated to ammonium partly by a 2.5-fold increase in glutamine synthase activity in fibrous roots and a 1.7-fold increase in leaf blades. Rapid ammonium assimilation into glutamine consumed carbon skeletons, leading to a depletion of foliar starch, sucrose, and maltose. Ammonium treatment stimulated activities of some glycolytic/Krebs cycle enzymes, e.g. pyruvate dehydrogenase. Nitrate-fed leaf blades contained substantially larger concentrations of osmolytes (i.e. nitrate, cations, and sucrose), which may have contributed to the faster rates of leaf expansion in nitrate-fed compared to ammonium-fed plants.  相似文献   

9.
Iron starvation induced marked increases in flavodoxin abundance and decreases in light-saturated and light-limited photosynthesis rates in the diatom Chaetoceros muelleri. Consistent with the substitution of flavodoxin for ferredoxin as an early response to iron starvation, increases of flavodoxin abundance were observed before declines of cell division rate or chl a specific photosynthesis rates. Changes in the abundance of flavodoxin after the addition of iron to iron-starved cells indicated that flavodoxin was not actively degraded under iron-replete conditions. Greater declines in light-saturated oxygen evolution rates than dark oxygen consumption rates indicated that the mitochondrial electron transfer chain was not affected as greatly by iron starvation as the photosynthetic electron transfer chain. The carbon:nitrogen ratio was unaffected by iron starvation, suggesting that photosynthetic electron transfer was a primary target of iron starvation and that reductions in nitrate assimilation were due to energy limitation (the C:N ratio would be expected to rise under nitrogen-limited but energy-replete conditions). Parallel changes were observed in the maximum light-saturated photosynthesis rate and the light-limited initial slope of the photosynthesis-light curve during iron starvation and recovery. The lowest photosynthesis rates were observed in iron-starved cells and the highest values in iron-replete cells. The light saturation parameter, Ik, was not affected by iron starvation, nor was the chl-to-C ratio markedly reduced. These observations were consistent with iron starvation having a similar or greater effect on photochemical charge separation in PSII than on downstream electron transfer steps. Declines of the ratio of variable to maximum fluorescence in iron-starved cells were consistent with PSII being a primary target of iron starvation. The functional cross-section of PSII was affected only marginally (<20%) by iron starvation, with the largest values observed in iron-starved cells. The rate constant for electron transfer calculated from fast repetition rate fluorescence was found to covary with the light-saturated photosynthesis rate; it was lowest in the most severely starved cells.  相似文献   

10.
氮素形态和铁营养对玉米苗期生长及体内铁分布的影响   总被引:1,自引:0,他引:1  
以玉米(Zea mays)品种‘豫玉-22’为材料,采用营养液培养方法,研究了低铁和正常供铁条件下供应不同形态氮素对玉米苗期生长及体内铁分布的影响。结果表明:(1)与低铁介质相比,常铁介质增加了各氮素处理玉米幼苗的株高、地上部干重、全株干重,降低了根冠比,其中硝态氮处理表现得尤其突出;与供应硝态氮(NO3--N)相比,增施铵态氮(1/2 NO3--N 1/2 NH4 -N,NH4 -N)能明显促进低铁介质中玉米生长,但在常铁介质下作用不明显。(2)相比于低铁介质,正常供铁显著提高了相应处理玉米新叶叶绿素含量及净光合速率;2种供铁介质中,NH4 -N处理的新叶叶绿素含量以及净光合速率均高于其它氮素处理。(3)相比于低铁介质,正常供铁处理总体上增加了玉米各部分活性铁含量和全铁含量,对NO3--N处理的新叶活性铁含量增加尤其明显;2种供铁介质中,NH4 -N均有利于提高新叶活性铁含量和植株地上部全铁含量。(4)玉米新叶活性铁含量不仅与其叶绿素含量显著正相关(r=0.979**),也与叶片净光合速率显著正相关(r=0.950**)。研究发现,供铁状况显著影响玉米新叶的叶绿素含量及其净光合速率且与供氮形态存在互作;供应铵态氮有利于提高缺铁条件下玉米新叶活性铁含量,增强玉米植株的光合能力,进而促进其正常生长。  相似文献   

11.
When incubated at pH 4–5, Chlorella freshly isolated from symbiosis with Hydra viridissima PALLAS 1766 (green hydra) release large amounts of photosynthetically fixed carbon in the form of maltose, and assimilation of inorganic N is inhibited. Physiological responses to N starvation of the cultured 3N813A strain of maltose-releasing Chlorella differed from those caused by 48 h of maltose release induced by low pH. N starvation increased rates of ammonium assimilation at pH 7.0 in light or darkness, and ammonium assimilation in darkness stimulated cell respiration. In contrast, cells pretreated at pH 5.0 to induce maltose release were unable to take up ammonium at pH 7.0 unless supplied with an external carbon source such as bicarbonate, acetate, or succinate, and rates of uptake were similar to control cells. Freshly isolated symbionts displayed a similar dependency. Rates of ammonium uptake by cells pretreated at pH 5.0 were reduced in darkness and did not stimulate cell respiration. N-starved cells supplied with ammonium also showed a large short-term increase in glutamine pools at the expense of glutamate, as might be expected if large amounts of ammonium were rapidly assimilated via glutamine synthetase/glutamate synthase, whereas after long-term maltose release cells showed only a small increase in glutamine when supplied with ammonium. Furthermore, maltose release caused a fall in pool sizes of a number of amino acids, including glutamine and glutamate, and also caused a decrease in pool sizes of 2-oxoglutarate and phospho-enol-pyruvate, which are required for ammonium assimilation into amino acids. Cells stimulated to synthesize and release maltose may be unable to assimilate ammonium and synthesize amino acids because of diversion of fixed carbon from N metabolism. We estimate that 40–50% affixed C is required for maximal maltose synthesis, whereas up to 30% fixed C is required for ammonium assimilation. These results are discussed in the context of host regulation of symbiotic algal growth.  相似文献   

12.
Nitrate-grown Azotobacter chroococcum ATCC 4412 cells lack the ability to fix N2. Nitrogenase activity developed after the cells were suspended in a combined nitrogen-free medium and was paralleled by a concomitant decrease in nitrate assimilation capacity. In such treated cells exhibiting transitory nitrate assimilation and N2-fixation capacity, nitrate or nitrite caused a short-term inhibitory effect on nitrogenase activity which ceased once the anion was exhausted from the medium. The analog L-methionine-DL-sulfoximine, an inhibitor of glutamine synthetase, prevented inhibition of nitrogenase activity by nitrate or nitrite without affecting the uptake of these antions, which were reduced and stoichiometrically released into the external medium as ammonium. Inhibition of nitrogenase by nitrate (nitrite) did not take place in A. chroococcum MCD1, which is unable to assimilate either. We conclude that the short-term inhibitory effect of nitrate (nitrite) on nitrogenase activity is due to some organic product(s) formed during the assimilation of the ammonium resulting from nitrate (nitrite) reduction.  相似文献   

13.
Prokaryotic picoplankton such as Synechococcus are relatively abundant in putatively Fe-limited high-nutrient, low-chlorophyll (HNLC) regions of the oceans. The physiology of Synechococcus under Fe stress has been studied less than eukaryotic algae. Recent evidence suggests that although biomass and growth rates of Synechococcus are not typically Fe limited in situ, cells may still exhibit symptoms of Fe stress. We grew Synechococcus A2169 and WH7803 in laboratory batch cultures in the artificial medium Aquil and enriched natural seawater, at a series of Fe concentrations and Fe:macronutrient ratios, and with either nitrate or ammonium as the sole nitrogen source. Cell yields, and in some experiments exponential specific growth rate (μ), were more readily Fe limited in the Atlantic isolate WH7803 than in the equatorial Pacific isolate A2169. In both strains, final cell yields spanned about an order of magnitude and decreased continuously with Fe concentration from 900 to 3.6 nM (150 μM N, 10 μM P), whereas μ decreased much less and only at Fe concentrations below 90 nM. Synechococcus yield was controlled by both absolute Fe concentration and Fe:macronutrient ratio, but μ was determined primarily by absolute Fe concentration. Contrary to theoretical predictions, neither yield nor μ was higher in Fe-limited cells grown in ammonium compared to nitrate. Under severe Fe stress, cellular chlorophyll (Chl) content and light-saturated gross photosynthetic capacity (Pcellm) decreased proportionately, and dark respiration (Rcelld) increased, such that net Pcellm was extremely low but gross PChlm was unchanged. This is the first report of an absolute increase in Rcelld under Fe stress in phytoplankton.  相似文献   

14.
Cultures of Isochrysis galbana Parks and Phaeodactylum tricornutum Bohlin were grown in iron-limited chemostats. With increasing iron deficiency, photosynthetic rate per cell and assimilation number decreased. The pattern of photosynthesis was also altered; in Fe deficient cells the proportion of 14C fixed in glycine and serine decreased with an accompanying increase into alanine after 3 min assimilation. Although there was no significant effect of Fe deficiency on the proportion of 14C incorporated into total amino acids and amides, the percentage of total 14C fixed in protein increased with increasing Fe deficiency. Cellular levels of chlorophyll a, carotenoids, cytochromes and protein also decreased with increasing Fe deficiency. However, the reduction in chlorophyll a/cell was not as great as that of cytochrorne f1 and Fe deficient cells therefore showed a marked increase in chlorophyll a:cytochrorne f1 ratio.  相似文献   

15.
A greenhouse experiment was carried out aiming to study the effect of iron deficiency on nitrogen fixation and ammonium assimilation in common bean nodules. Host-plant and nodule growth, symbiotic nitrogen fixation, glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were analyzed in two common bean varieties subjected to iron deficiency. Results showed that host-plant and nodules growth, nitrogen fixation and GS activity decreased when under Fe-deficiency against an important increase of ammonium accumulation and GDH activity. Tolerant variety Flamingo is clearly less affected by iron deficiency than the sensitive one, Coco blanc. The allocation of iron to nodules and Fe use-efficiency for nodule growth and symbiotic nitrogen fixation were on the basis of the symbiotic performance of Flamingo under iron deprivation. Under Fe-deficiency, GDH take over GS the ammonium assimilation activity, particularly in the tolerant variety.  相似文献   

16.
The capabilities of the diel vertically migrating flagellate Heterosigma carterae Hulburt for assimilating ammonium and nitrate into cell‐N in light and in darkness were studied using cells of different N‐status. Ammonium utilization in darkness, except by N‐replete cells, attained>50% of use in the light. However, the capacity to use nitrate was poor in darkness, and less than 20% of nitrate‐N that was taken up in darkness was then actually incorporated into cell‐N. The ability to assimilate N in darkness improved as N‐status (N:C) declined, concurrent with an increasing content of water‐soluble carbohydrate. This carbohydrate was used to support dark N‐assimilation. Cells held in darkness for over a day and that had halted nitrate‐uptake were still capable of taking up ammonium. Furthermore, the act of taking up ammonium appeared to make available a source of C to support nitrate uptake that was previously unavailable. The implications of these results for the ecophysiology of this organism and for the construction of mathematical models of algal growth are considered.  相似文献   

17.
Gradual inhibition of ammonium assimilation in Anacystis nidulans cells by increasing concentrations of 5-hydroxylysine resulted in a progressive enhancement of nitrate uptake. For 5-hydroxylysine-treated cells, the magnitude of the inhibition of nitrate uptake promoted by added ammonium was dependent on the ammonium assimilation capacity. In cells with a moderate ammonium assimilation activity, acceleration of CO2 fixation induced by bicarbonate addition antagonized the negative effect of ammonium, allowing full nitrate uptake activity. The results support the contention that nitrate utilization is under the feed-back control exerted by products of its own assimilation via ammonium, the inhibitory effect being potentiated by ammonium addition and alleviated by enhanced CO2 fixation. Results of amino acid analysis in cells exhibiting different capacities to utilize nitrate speak against these compounds as direct effectors of nitrate uptake.  相似文献   

18.
Uptake and assimilation kinetics of nitrate and ammonium were investigated along with inhibition of nitrate uptake by ammonium in the harmful dinoflagellate Alexandrium minutum Halim at different nitrogen (N)–limited growth rates. Alexandrium minutum had a strong affinity for nitrate and ammonium (Ks=0.26±0.03 and 0.31±0.04 μmol·L?1, respectively) whatever the degree of N deficiency of the cells. Ammonium was always the preferred form of nitrogen taken up (=0.42–0.50). In the presence of both forms, nitrate uptake was inhibited by ammonium, and inhibition was particularly marked in N‐sufficient cells (Imax~0.9 and Ki=0.31–0.56 μmol·L?1). In the case of N assimilation, ammonium was also the preferred form in N‐deficient cells (=0.54–0.72), whereas in N‐sufficient cells, both N sources were equally preferred (=0.90–1.00). The comparison of uptake and assimilation rates highlighted the ability of A. minutum to significantly store in 1 h nitrate and ammonium in amounts sufficient to supply twice the daily N requirements of the slowest‐growing N‐deficient cells. Nitrogen uptake kinetic parameters of A. minutum and their ecological implications are discussed.  相似文献   

19.
The nitrate uptake capacity of mature blade tissue of the giant kelp, Macrocystis pyrifera (L.) C. Ag., was examined as a function of the availability of light and nitrate. Time course measurements indicated that nitrate uptake rate, as measured by the incorporation of 15N, was significantly increased by N starvation. The response was linear over the first hour of exposure regardless of the N status of the tissue indicating that surge uptake was not responsible for the increase. The Michaelis-Menten parameters Vmax and Ks, however, were not significantly changed by either growth nitrate concentration or growth irradiance as a result of high variability among blades. Similarly, the initial slope (α) of the nitrate uptake kinetics curves was unaffected. Concentration of photosynthetic pigments increased in response to increased nitrate availability but not to increased growth irradiance. Time course and pigment data demonstrated that mature blade tissue responds to increased N availability by decreasing its capacity to take up nitrate and by increasing its investment in photosynthetic pigments, perhaps for N storage or enhanced light-harvesting capabilities and the increase in reducing power available for N assimilation. This study provides evidence for a dynamic regulatory system that responds to changes in nitrate availability in an integrated manner.  相似文献   

20.
Claussen  W.  Lenz  F. 《Plant and Soil》1999,208(1):95-102
Blueberry, raspberry and strawberry may have evolved strategies for survival due to the different soil conditions available in their natural environment. Since this might be reflected in their response to rhizosphere pH and N form supplied, investigations were carried out in order to compare effects of nitrate and ammonium nutrition (the latter at two different pH regimes) on growth, CO2 gas exchange, and on the activity of key enzymes of the nitrogen metabolism of these plant species. Highbush blueberry (Vaccinium corymbosum L. cv. 13–16–A), raspberry (Rubus idaeus L. cv. Zeva II) and strawberry (Fragaria × ananassa Duch. cv. Senga Sengana) were grown in 10 L black polyethylene pots in quartz sand with and without 1% CaCO3 (w: v), respectively. Nutrient solutions supplied contained nitrate (6 mM) or ammonium (6 mM) as the sole nitrogen source. Compared with strawberries fed with nitrate nitrogen, supply of ammonium nitrogen caused a decrease in net photosynthesis and dry matter production when plants were grown in quartz sand without added CaCO3. In contrast, net photosynthesis and dry matter production increased in blueberries fed with ammonium nitrogen, while dry matter production of raspberries was not affected by the N form supplied. In quartz sand with CaCO3, ammonium nutrition caused less deleterious effects on strawberries, and net photosynthesis in raspberries increased as compared to plants grown in quartz sand without CaCO3 addition. Activity of nitrate reductase (NR) was low in blueberries and could only be detected in the roots of plants supplied with nitrate nitrogen. In contrast, NR activity was high in leaves, but low in roots of raspberry and strawberry plants. Ammonium nutrition caused a decrease in NR level in leaves. Activity of glutamine synthetase (GS) was high in leaves but lower in roots of blueberry, raspberry and strawberry plants. The GS level was not significantly affected by the nitrogen source supplied. The effects of nitrate or ammonium nitrogen on net photosynthesis, growth, and activity of enzymes in blueberry, raspberry and strawberry cultivars appear to reflect their different adaptability to soil pH and N form due to the conditions of their natural environment. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号