首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorpromazine, haloperidol and clozapine are approximately equipotent in antagonizing dopamine sensitive adenylate cyclase activity in homogenates of rat brain striatum, in contrast to the differences in clinical antipsychotic potencies reported by others. The antagonism appeared to occur at a structurally specific dopamine site, as inhibition by a series of chlorpromazine analogues of similar hydrophobicity exhibited a structural specificity similar to that found for their neuroleptic and cataleptic activities. Sulpiride, a dopamine antagonist with antipsychotic activity, and metoclopramide, a structurally related central dopamine antagonist, failed to inhibit the dopamine sensitive adenylate cyclase. Pre-treatment of rats with haloperidol (3 mg/kg per day) for 6 or 28 days did not induce a supersensitive response of the adenylate cyclase to stimulation by dopamine or apomorphine or inhibition by clozapine. It was concluded that the dopamine sensitive adenylate cyclase may not be the site of action of all anti-psychotic agents.  相似文献   

2.
Sultopride and sulpiride are both chemically similar benzamide derivatives and selective antagonists of dopamine D2 receptors. However, these drugs differ in clinical properties. We compared the effects of sultopride and sulpiride on dopamine turnover in rats following the administration of these drugs alone or in combination with apomorphine. The administration of sultopride or sulpiride markedly accelerated dopamine turnover in the rat brain. The increase in the level of dopamine metabolites in the striatum was more marked in the sultopride-treated rats. Sulpiride affected the limbic dopamine receptors preferentially, whereas sultopride affected the striatal and the limoic dopamine receptors equally. A low dose of apomorphine induced a reduction in the concentration of dopamine metabolites in the striatum and the nucleus accumbens by approximately 55%, but not in the medial prefrontal cortex. Sultopride was more effective in preventing an apomorphine-induced reduction in dopamine metabolite levels. These results from rat experiments would model the pharmacological differences observed between sultopride and sulpiride in clinical use.  相似文献   

3.
Dopamine receptors in the central nervous system can be studied by measuring the specific binding of [3H]dopamine, [3H]haloperidol, d-[3H]LSD, [3H]dihydroergocryptine or [3H]apomorphine. The receptors are stereoselectively blocked by +)-butaclamol, a neuroleptic. All neuroleptics inhibit the specific binding of [3H]haloperidol in relation to their clinical potencies. The radioligand that desorbs most slowly from the receptor is [3H]apomorphine, thus making it a reliable ligand for dopamine receptors. Dopamine agonists that compete for [3H]apomorphine binding do so at concentrations that correlate with their potency in stimulating striatal adenylate cyclase. Structure-activity analysis, using [3H]apomorphine, confirms that the active dopamine-mimetic conformation is the beta rotamer of dopamine. Prolonged exposure in vitro of caudate homogenate to high concentrations of dopamine leads to increased binding of [3H]apomorphine or [3H]haloperidol, suggesting receptor "sensitization." Chronic haloperidol treatment of rats leads to an increased number of dopamine/neuroleptic receptors in the striatum, but a decrease in the pituitary.  相似文献   

4.
Bromocriptine injected to rats induces an increase of cAMP levels in the striatum in vivo. The time course of this increase is very similar to that of apomorphine. However bromocriptine does not stimulate striatal dopamine-sensitive adenylate cyclase but surprisingly antagonized the activation of this enzyme elicited by dopamine. Possible hypotheses on various sites of action of the drug are discussed.  相似文献   

5.
Y Hoshino  H Obara  S Iwai 《Life sciences》1986,39(26):2525-2531
In rabbit pulmonary artery, dopamine (10(-11)-10(-5) M) produced a concentration-dependent relaxation of the arterial strips contracted with prostaglandin F2 alpha (PGF2 alpha) in the presence of prazosin (10(-6) M), yohimbine (10(-6) M), propranolol (10(-6) M), and methysergide (10(-6) M). SKF38393, an agonist for D1 or DA1 dopamine receptor, mimicked partially the concentration-response curve for dopamine, whereas LY171555 and apomorphine did not. The order of potency of dopamine antagonists on the inhibitory effect was: cis-flupenthixol greater than bulbo-capnine greater than metoclopramide greater than haloperidol. Sulpiride was inactive. Cis-flupenthixol did not block the relaxation induced by acetylcholine, adenosine, and papaverine. In the arterial strips of the rabbits pretreated with 6-hydroxydopamine, the concentration-response curve for dopamine was similar to that in non-treated rabbits. Thus it is concluded that a specific dopamine receptor is located on the postsynaptic muscle membrane of the rabbit pulmonary artery.  相似文献   

6.
SR-142948A belongs to the second generation of potent, selective, non-peptide antagonists of neurotensin receptors. It was used to investigate the role of endogenous neurotensin in the regulation of dopamine efflux in the nucleus accumbens and striatum of anaesthetized and pargyline-treated rats. All the data were obtained using in vivo electrochemistry. Electrically evoked (20 Hz, 10 s) dopamine efflux was monitored by differential pulse amperometry, whereas variations in basal (tonic) dopamine efflux were monitored by differential normal pulse voltammetry. Like the first-generation compound SR-48692, SR-142948A did not affect the tonic and evoked dopamine efflux, but dose-dependently enhanced haloperidol (50 microg/kg, i.p.) induced facilitation of the electrically evoked dopamine release in the nucleus accumbens. In contrast to SR-48692, SR-142948A dose-dependently potentiated haloperidol (50 microg/kg, i.p.) induced increase in the basal dopamine level in the nucleus accumbens. This potentiating effect did not appear in the striatum. When dopaminergic and/or neurotensinergic transmissions were modified by a higher dose of haloperidol (0.5 mg/kg, i.p.), apomorphine, amphetamine or nomifensine, SR-142948A pre-treatment affected only the effect of apomorphine on the basal dopamine level in the nucleus accumbens. These results strengthen the hypothesis that endogenous neurotensin could exert a negative control on mesolimbic dopamine efflux.  相似文献   

7.
Several lines of evidence indicate that the i.v. injection of 3H-pimozide results in a specific in vivo binding of the neuroleptic to dopaminergic receptors.First, 3H-pimozide is preferentially accumulated in the striatum as compared to non-dopaminergic structures like the cerebellum. Second, the selective accumulation of 3H-pimozide is prevented by prior administration of various neuroleptics as well as by apomorphine. Moreover, doses of antagonists which prevent this accumulation were identical to those which lead to an increased striatal HVA level. Third, 3H-pimozide accumulation is not modified by the administration of a variety of non-dopaminergic agents.However, 3H-pimozide binding is not prevented either by indirect dopamine agonists and is even greatly increased by d-amphetamine at high doses. The possibility that direct or indirect dopamine agonists may favour the binding of the antagonist through a modification of receptor sites is discussed.  相似文献   

8.
A Louilot  M Le Moal  H Simon 《Life sciences》1987,40(20):2017-2024
Buspirone is a non-benzodiazepine drug with anxiolytic properties. It has been reported to induce a marked increase in the metabolism of dopamine in the striatum and the nucleus accumbens which is similar to that induced by neuroleptics. It has been suggested that the effect observed in the striatum reflects an action of buspirone on dopaminergic autoreceptors in both terminals and cell bodies. In the present study, presynaptic effects of buspirone on dopaminergic metabolism in the nucleus accumbens were investigated, and they were compared to the effects of the classical neuroleptic, haloperidol. Dopaminergic terminals were isolated by infusion of tetrodotoxin into the median forebrain bundle in order to evaluate the effects of buspirone and haloperidol on presynaptic receptors. Changes in dopamine metabolism were determined by in vivo voltammetry. Buspirone administered after interruption of the impulse flow did not affect dopamine metabolism. In contrast haloperidol treatment led to an increase in metabolism of dopamine. It is concluded that buspirone did not act at the presynaptic level and furthermore on dopaminergic autoreceptors.  相似文献   

9.
H N Bhargava 《Life sciences》1984,34(9):873-879
Chronic intragastric administration of haloperidol (1.5 mg/kg/day) for 21 days followed by a 3-day withdrawal period resulted in the development of enhanced locomotor activity response to apomorphine, and an increase in the number of binding sites for 3H-spiroperidol in the striatal membranes of the rat brain. Subcutaneous administration of Pro-Leu-Gly-NH2 or cyclo(Leu-Gly) in doses of 2 mg/kg/day given for 3-days after termination of haloperidol treatment inhibited the enhanced response to apomorphine, as well as the increases in the number of 3H-spiroperidol binding sites in the striatum. If indeed, the supersensitivity of striatal dopamine receptors is one of the mechanisms in the development of tardive dyskinesia symptoms, the present results suggest that the above peptides may be helpful in ameliorating some of the symptoms of tardive dyskinesia induced by neuroleptic drugs.  相似文献   

10.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

11.
125I-Spiperone binds with high affinity (KD 0.3 nM) to a single specific site (Bmax 34 pmol/g wet weight) in homogenates of rat corpus striatum. Specific binding is about 40-60 percent of total binding and is displaced stereo-specifically by butaclamol and clopenthixol. Neuroleptic drugs of various classes are potent inhibitors of 125I-spiperone binding (Ki's 1-10 nM). Selective dopamine antagonists such as sulpiride (Ki 50 nM) and dopamine agonists such as apomorphine (Ki 200 nM) are also potent inhibitors. The drug specificity of 125I-spiperone binding correlates well with that of 3H-spiperone binding, providing good evidence that 125I-spiperone labels D2 dopamine receptors in striatal membranes. 125I-Spiperone, with its high specific activity (2200 Ci/mmol) may prove to be a useful ligand in studies examining D2 dopamine receptors in soluble preparations and by autoradiography. Furthermore iodinated spiperone may be useful in radioreceptor assays of neuroleptic drug levels and, in a 123I-labeled form, for imaging of dopamine receptors, in vivo, using single photon tomography.  相似文献   

12.
The behavioral and brain catecholamine effects of 2,5-bis (3,4-dimethoxybenzyl) cyclopentyl amine were investigated in mice. It rapidly depleted norepinephrine. Chronic dosing also depleted dopamine, but to a lesser degree. As indicated by a lack of effect on amphetamine induced stereotypy and apomorphine induced emesis and failure to induce catalepsy, the compound does not block brain dopamine receptors. It has no effect on brain catecholamine synthesis or dopamine-β-hydroxylase activity.  相似文献   

13.
Dopamine can act directly on pituitary cells to inhibit prolactin release. This action can be blocked by dopamine receptor blocking drugs such as haloperidol, sulpiride and other neuroleptic agents. Comparison of the properties of the mammotroph dopamine receptor with the adenylate cyclase linked dopamine receptor of the limbic forebrain reveals some obvious differences. For example, dopamine receptor stimulants such as S-584 and lergotrile mesylate are inactive in stimulating the adenylate cyclase preparations but are potent in inhibiting pituitary prolactin secretion. Such inhibition of prolactin secretion can be reversed by haloperidol or sulpiride. In contrast to these observations, sulpiride does not block dopamine stimulation of cAMP formation. In addition, dopamine, apomorphine or lergotrile mesylate have no effect on a pituitary adenylate cyclase preparation and dopamine fails to elevate cAMP in the intact cells in culture. Despite the similarity between these two dopamine sensitive systems with respect to a number of agonists and antagonists, the exceptions described suggest that the pituitary system with further study may offer some greater reliability as a predictive test for clinically useful agents. These results also suggest that the receptors for dopamine, like that for norepinephrine, are of two types, only one of which is coupled to adenylate cyclase.  相似文献   

14.
The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by gamma-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for 3H-dopamine and 3H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs.  相似文献   

15.
By means of in vivo microdialysis combined with HPLC analysis, we have shown that local infusions of 1 mM N-nitro-L-arginine (NO-synthase inhibitors) in the rat striatum reduced, and infusions of 100 microM apomorphine (agonists of the dopamine receptors) increased the level of citrulline (a NO co-product) in extracellular space of this structure. The apomorphine-induced increase in citrulline extracellular levels in the striatum was completely prevented by infusions of N-nitro-L-arginine in this structure, and 10 microM raclopride (dopamine D2 receptor blocker), but not by infusions of 50 microM SCH-23390 (dopamine D1 receptor blocker). The data obtained suggest that the increase in citrulline extracellular levels in striatum resulted from local activation of NO-synthase, and this effect is mediated by D2 rather than D1 dopamine receptors.  相似文献   

16.
It has been shown in experiments on mice and rats that unlike haloperidol and sulpiride, carbidine does not influence the intensity and even increases the duration of apomorphine stereotypy. However, similarly to haloperidol carbidine decreases head twitches in mice, induced by administration of 5-hydroxytryptophan. In radioligand-binding experiments in vitro and in vivo carbidine displaced 3H-spiperone but in the brain cortex without having any effect on the binding in the striatum. Carbidine did not affect the dopamine-sensitive adenylate cyclase in rat striatum. Based on these data it is suggested that in contrast to haloperidol and sulpiride, carbidine selectively inhibits serotonin receptors of the brain.  相似文献   

17.
Chronic treatment with haloperidol is associated with complete tolerance to the decreasing effect of the neuroleptic on cerebellar cGMP content, vice versa chronic haloperidol causes hypersensitivity to the enhancing effect of apomorphine on cerebellar cGMP. Thus, the administration of 0.5 mg/Kg of haloperidol decreases cerebellar cGMP by 80% in control rats but fails to alter this nucleotide in rats chronically treated with haloperidol (0.5 mg/Kg twice daily for 20 days). A dose of 0.5 mg/Kg of apomorphine enhances cGMP by approximately 25 and 60 percent in control rats and in rats chronically treated with haloperidol, respectively. The results suggest that: a) There is a functional link between striatum and cerebellum; b) Cerebellar cGMP is a sensitive index of the state of activation of striatal dopamine receptors.  相似文献   

18.
The effect of chronic levodopa-carbidopa administration (200 mg/kg for 21 days) on guinea pigs rendered behaviorally supersensitive by the prior administration of haloperidol (.5 mg/kg for 21 days) was examined. Animals who showed an increased behavioral response to apomorphine after chronic haloperidol administration were treated with levodopa-carbidopa and then apomorphine - induced stereotypy was reexamined. Although the chronic levodopa control groups and the chronic haloperidol control remained supersensitive to the behavioral effect of apomorphine, the haloperidol-levodopa group's behavioral response to apomorphine returned to normal. Both chronic dopaminergic antagonist and agonist administration have been demonstrated to induce heightened apomorphine-induced stereotypy and this has been interpreted as a reflection of altered striatal dopamine receptor site sensitivity. The finding that the serial administration of a chronic dopaminergic antagonist followed by a chronic dopaminergic agonist results in a return to normal of a striatal dopamine receptor-dependent behavior suggests that these chronic treatments affect dopamine receptor sites by different mechanisms of action. Since neuroleptic induced dopaminergic supersensitivity in animals is an accepted model of tardive dyskinesia, levodopa may also reverse dopaminergic supersensitivity in patients and might be a potential therapeutic agent in tardive dyskinesia.  相似文献   

19.
Chemical denervation supersensitivity of postsynaptic dopamine receptors was induced in mice by intracerebroventricular injection of 6-hydroxydopamine. Fourteen days after the 6-hydroxydopamine injection, mice exhibited greater spontaneous locomotor activity and hypothermic response when challenged intraperitoneally with apomorphine. Whole brain levels of dopamine were reduced by 80%. Daily subcutaneous administration of cyclo (Leu-Gly) (50 μg/mouse/day) for 14 days inhibited the development of dopamine receptor supersensitivity induced by 6-hydroxydopamine as evidenced by the blockade of an apomorphine induced locomotor and hypothermic effect. Cyclo (Leu-Gly) did not alter the depletion of brain dopamine induced by 6-hydroxydopamine. These data suggest that cyclo (Leu-Gly) can block the development of dopamine receptor supersensitivity induced by 6-hydroxydopamine without protecting the neurons from dopamine depletion.  相似文献   

20.
K W Lange 《Life sciences》1989,45(18):1709-1714
Old and young adult rats received unilateral injections of MPTP or saline into the substantia nigra. Unilateral injection of MPTP in old rats induced ipsiversive circling on day 1 and day 7 after the injection; contraversive circling behavior was induced in MPTP-treated rats by systemic administration of apomorphine. Young rats showed ipsiversive circling on day 1 but not on day 7 after the injection; administration of apomorphine did not induce contraversive circling. On day 10 after the injection of MPTP, the concentration of D-2 receptors in the striatum of the injected hemisphere of old rats was increased by about 25% compared with the striatum of old rats with saline injection and of young rats with MPTP or saline injections. These results suggest that MPTP exerts neurotoxic effects on the nigrostriatal dopaminergic system of old rats and produces supersensitive dopamine receptors in the ipsilateral denervated striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号