首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed the alkane and fatty-acid utilizing yeast Candida tropicalis as a host for DNA transformations. The system is based on an auxotrophic mutant host of C. tropicalis which is defective in orotidine monophosphate decarboxylase (ura3). The ura3 host was isolated by mutagenesis and a double-selection procedure that combined nystatin enrichment selection and 5-fluoro-orotic acid resistance selection. As a selectable marker, we isolated and characterized the C. tropicalis URA3 gene. Plasmid vectors that contained the C. tropicalis URA3 gene transformed the C. tropicalis mutant host at a frequency of 10(3) to 10(4) transformants per micrograms of plasmid DNA. Vectors that contained the Saccharomyces cerevisiae URA3 gene could not transform C. tropicalis. DNA transfer was accomplished by modified versions of either spheroplast generation (CaCl2-polyethylene glycol)-fusion or cation (LiCl) procedures developed for S. cerevisiae. Plasmid vectors that had been cut within the C. tropicalis URA3 fragment integrated by homologous recombination at the URA3 locus.  相似文献   

2.
Summary Hybrid plasmids containing the bacterial resistance-transfer factor pBR322 and the yeast leu2 +gene have been used to isolate DNA fragments of Physarum that are capable of initiating DNA replication in a yeast host. Five of forty hybrid plasmids containing Physarum sequences transform leu2 -yeast to Leu+ at high frequency. The resulting Leu+ transformants are characterized by phenotypic instability. Supercoiled plasmid molecules containing pBR322 sequences can be detected in the transformed yeast, indicating that the transforming DNA replicates autonomously. Plasmid DNA isolated from Leu+ yeast can transform leuB bacteria. The hybrid plasmid recovered from the Leu+ bacterial transformants is identical to the original plasmid, indicating structural integrity is maintained during passage through the yeast host. These hybrid plasmids containing Physarum sequences have the same characteristics as those containing autonomously replicating yeast chromosomal sequences. As the temporal sequence of DNA replication is particularly accessible to study in Physarum plasmodia, the functional significance of these segments should be amenable to study.  相似文献   

3.
Extrachromosomal rDNA circles (ERCs) and recombinant origin-containing plasmids (ARS-plasmids) are thought to reduce replicative life span in the budding yeast Saccharomyces cerevisiae due to their accumulation in yeast cells by an asymmetric inheritance process known as mother cell bias. Most commonly used laboratory yeast strains contain the naturally occurring, high copy number 2-micron circle plasmid. 2-micron plasmids are known to exhibit stable mitotic inheritance, unlike ARS-plasmids and ERCs, but the fidelity of inheritance during replicative aging and cell senescence has not been studied. This raises the question: do 2-micron circles reduce replicative life span? To address this question we have used a convenient method to cure laboratory yeast strains of the 2-micron plasmid. We find no difference in the replicative life spans of otherwise isogenic cir+ and cir0 strains, with and without the 2-micron plasmid. Consistent with this, we find that 2-micron circles do not accumulate in old yeast cells. These findings indicate that naturally occurring levels of 2-micron plasmids do not adversely affect life span, and that accumulation due to asymmetric inheritance is required for reduction of replicative life span by DNA episomes.  相似文献   

4.
J Ferguson  J C Groppe  S I Reed 《Gene》1981,16(1-3):191-197
We have constructed three new subcloning plasmid vectors, pRC1, pRC2, and pRC3, derived from pKC7, which allow the rapid, single-step subcloning of yeast genes. Subcloning with these vectors utilizes a partial digestion with Sau3A to generate a quasi-random set of DNA fragments from the original plasmid. All three vectors contain a kanamycin resistance gene. Therefore, if the original cloned yeast DNA fragment is present in a vector that does not specify kanamycin resistance, the subclone pool can be propagated in Escherichia coli in the presence of kanamycin to select against parent plasmids that escaped restriction by Sau3A. Selection by complementation in yeast yields a collection of plasmids with smaller yeast DNA inserts containing the gene of interest. In the vectors pRC2 and pRC3, constructed from pRC1, the unique BamHI site is located within an intact tetracycline resistance gene, thus making it possible to screen bacterial transformants for those containing recombinant plasmid molecules. Vectors pRC2 and pRC3 also contain the yeast 2 micrometers DNA replication origin, and thus are more stable than plasmids carrying only the TRP1-associated replicator (ars1).  相似文献   

5.
Y Sakai  T Kazarimoto    Y Tani 《Journal of bacteriology》1991,173(23):7458-7463
An integrative transformation system was established for an asporogenous methylotrophic yeast, Candida boidinii. This system uses a uracil auxotrophic mutant of C. boidinii as the host strain in combination with its URA3 gene as the selectable marker. First, the C. boidinii URA3 gene coding for orotidine-5'-phosphate decarboxylase (ODCase) was cloned by using complementation of the pyrF mutation of Escherichia coli. Next, the host ODCase-negative mutant strains (ura3 strains) were isolated by mutagenesis and selection for 5-fluro-orotic acid (5-FOA) resistance. Five ura3 host strains that exhibited both a low reversion rate and good methylotrophic growth were obtained. All of these strains could be transformed to Ura+ phenotype with a C. boidinii URA3-harboring plasmid linearized within the Candida DNA. The transformants had a stable Ura+ phenotype after nonselective growth for 10 generations. These results and extensive Southern analysis indicated that the linearized plasmid was integrated into the host chromosomal DNA by homologous recombination at the URA3 locus in C. boidinii.  相似文献   

6.
Summary A method for integrative transformation of the diploid yeast Candida tropicalis by electroporation has been developed. By linearizing the transforming plasmid DNA containing the URA3 gene prior to electroporation of recipient cells, its integration was targeted to a specific locus in the genome, resulting in single or multiple tandem integrations. The optimal electroporation conditions for this yeast were established and include an electric pulse of 2.25 kV/cm for a duration of 50 ms. Using these conditions, Ura+ transformants were readily obtained at a high frequency (45 transformants/g DNA) as the result of targeted integration of the URA3 gene containing plasmid DNA at the chromosomal ura3 locus. The number of transformants resulting from this procedure is comparable to that achieved with a recently reported spheroplast transformation procedure for C. tropicalis; in addition, it offers the advantages of being simple, rapid and reproducible.  相似文献   

7.
Transposon Tn9 carrying camr gene which controls resistance to chloramphenicol has been introduced in vivo (in cells of Escherichia coli) into two chimeric shuttle plasmids pYF91 and YEp13. These plasmids consist of the different parts of the E. coli plasmid pBR322, the yeast 2mkm DNA plasmid and the yeast LEU2 structural gene. The plasmidis able to autonomously replicate in both yeast and bacterial cells. A recipient yeast strain carrying cams and leu2 markers was constructed to study the functional expression of the prokaryotic camr gene in eukaryotic yeast cells. The chimeric plasmids pYF91::Tn9 and YEp13::Tn9 were introduced into the yeast and bacterial recipient strains by transformation. The camr LEU2 yeast transformants were isolated. They were genetically unstable when grown on non-selective medium and they simultaneously lost camr and LEU2 markers with a frequency of 10 to 30%. The E. coli transformants were genetically stable under nonselective conditions and they maintain all plasmid markers. The chimeric plasmid pYF91::Tn9 was isolated from the yeast transformants and reintroduced into the cams leuB bacterial strain by transformation. The camr LEUB transformants were obtained. All these data confirm the possibility of the expression of the prokaryotic camr gene in yeast cells and present evidence for introduction of transposon Tn9 into chimeric plasmids.  相似文献   

8.
The plasmid pSB3 of yeast Zygosacharomyces bisporus has been sequenced. It contains 6,615 base pairs, including a pair of inverted repeats (IR) consisting of 391 base pairs and 3 large open reading frames (ORF). One of the ORFs (A gene) participates in the recombination at the IRs and the other two (B and C genes) are necessary for the stable maintenance of this plasmid. The ARS sequence, which functions in a Saccharomyces cerevisiae host, was localized within 168 base pairs consisting of part of one of the IRs and a unique sequence contiguous to it. pSB3 can be maintained as stably in Z. rouxii as in the natural host Z.bisporus. In contrast, pSB3 is maintained fairly unstably in S.cerevisiae. The reason for this instability was found to be inefficient partitioning of pSB3 in S.cerevisiae. The molecular construction of pSB3 resembles that of 2-micron DNA, however, sequence homology at the DNA level was very poor.  相似文献   

9.
In Saccharomyces cerevisiae strain 6-1G-P188 about 10 per cent of rRNA genes exist as extrachromosomal copies of rDNA repeating units. These extrachromosomal copies can be isolated as covalently closed molecules with lengths around 3mu. We have constructed a set of hybrid plasmids containing the bacterial vector pBR325, the LEU2 gene of yeast encoding beta-isopropylmalatedehydrogenase and various EcoRI restriction fragments of the 3mu DNA. We have tested the ability of our hybrid plasmids to transform LEU2 strain DC5 to leucine prototrophy. One of the plasmids Rcp21/11 transforms DC5 at the frequency comparable with that obtained with YEp13, containing the 2mu DNA replication origin. The 2400 bp EcoRI-B fragment of the 3mu DNA in Rcp21/11 carries a gene for 5S rRNA and two spacers. Our results on transformation experiments allow un to suggest that this EcoRI fragment also carries the 3mu DNA replication origin. Yeast transformants containing this plasmid are highly unstable but during the prolonged growth in selective conditions the stabilization of the LEU+ phenotype is observed being most likely a result of integration of Rcp21/11 into the yeast chromosome.  相似文献   

10.
The occurrence of reciprocal exchange of flanking DNA during gene conversion between the repeated segments of the yeast plasmid, 2-micron circle has been examined. The conversion event is induced by making a double-stranded gap within one of the repeats in vitro and allowing the gap to be repaired in vivo. The repair takes place with frequent recombination of flanking markers. Neither the topology of the plasmid substrates (linear or circular) nor the relative orientation of the repeats affects the association rule significantly. These events are reminiscent of meiotic gene conversion between homologous chromosomes but contrast sharply with mitotic or meiotic intrachromosomal gene conversion. It would appear that the difference between the outcomes of intramolecular gene conversion on a chromosome and on a plasmid gapped in vitro does not result from the different physical states of intracellular versus transformed DNA. A gene conversion event in a 2-micron circle : : Tn5 plasmid mediated by the 2-micron circle recombinase (FLP) in vivo, which is formally analogous to the yeast mating type interconversion, often results in recombination of flanking markers. The reaction can be mimicked, in the absence of FLP, by gapping the plasmid within one of the 2-micron circle repeats in vitro and carrying out gap repair in vivo.  相似文献   

11.
J. B. Keeney  J. D. Boeke 《Genetics》1994,136(3):849-856
Homologous integration into the fission yeast Schizosaccharomyces pombe has not been well characterized. In this study, we have examined integration of plasmids carrying the leu1(+) and ura4(+) genes into their chromosomal loci. Genomic DNA blot analysis demonstrated that the majority of transformants have one or more copies of the plasmid vector integrated via homologous recombination with a much smaller fraction of gene conversion to leu1(+) or ura4(+). Non-homologous recombination events were not observed for either gene. We describe the construction of generally useful leu1(+) and ura4(+) plasmids for targeted integration at the leu1-32 and ura4-294 loci of S. pombe.  相似文献   

12.
Hybrid plasmid pSP97 carrying the entire genome of polyoma virus (PY), inserted into bacterial vector psV3, transforms yeast cells with the frequency 1 x 10(-2). Plasmid pSP97 is capable of autonomous replication in S. cerevisiae, while its structure remains unaltered, the stability of hybrid plasmid in transformants is 44%--100%. Plasmid pSP155 consisting of Ori-containing DNA segment from polyoma, pBR322 and yeast gene arg4, transforms yeast cells with the frequency 5 x 10(-3), the stability of plasmid in transformants is 23%--29%. Two types of plasmids were isolated from transformants: one was identical to SP155, while the another differed structurally and phenotypically from SP155. Plasmids pSP113 and pSP114, in addition to pBR322 and yeast gene arg4, contain a viral DNA segment that encodes genes from small and middle T-antigens. These plasmids transform yeast cells with low frequency (2 x 10(-4), 3 x 10(-5)), the stability of plasmids in yeast transformants is 100%. However, hybrid plasmids identical to pSP113 were isolated from transformants. Structural rearrangements have been observed in pSP114, which carries the arg4 gene in reversed orientation compared to pSP113.  相似文献   

13.
A host-vector system for the yeast Hansenula anomala was developed. The system was based on an auxotrophic mutant host of H. anomala which was defective in orotidine-5′-phosphate decarboxylase (ODCase) activity. The H. anomala ODCase-negative mutant strains (ura3 strains) were isolated based on 5-fluoroorotic acid (5-FOA) resistance. A plasmid vector containing the H. anomala URA3 gene was used for transformation. Using this plasmid, all of the H. anomala ura3 strains tested could be transformed to Ura+ phenotypes. In all of Ura+ transformants, the introduced plasmid was integrated into the chromosomal URA3 locus by homologous recombination. The Ura+ phenotype of the transformants was stably maintained after nonselective growth.  相似文献   

14.
Spheroplasts of Hansenula polymorpha strain deficient in 2-isopropylmalate dehydrogenase have been shown to be transformed by the DNA of a hybrid plasmid pHRI, carrying the LEU2 gene from S. cerevisiae and 2.0 kilobase HindIII fragment of H. polymorpha genomic DNA. The frequency of transformants has reached 10(3) per 1 microgram of transforming DNA. Plasmid pHRI is maintained in transformants as an autonomous circular DNA molecule and is inherited by 1-2% fraction of cells from the population growing under the selective conditions. Transformation takes place under the same conditions that are required for spheroplast fusion. Thus, H. polymorpha becomes one more species of yeast susceptible to hybrid plasmid-mediated gene transfer in the process of DNA transformation.  相似文献   

15.
Endomyces fibuliger is a dimorphic yeast which is homothallic and exists predominantly in the diploid phase with a brief haploid phase. A repeat unit of the ribosomal RNA genes, or rDNA, from E. fibuliger 8014 met has been isolated, cloned and sequenced. In this report, the sequences of the 17S, 5.8S and 26S rRNA genes are presented. Homology between the sequenced rRNA genes and those of closely-related yeast strains, particularly Saccharomyes cerevisiae and Candida albicans, was observed. As a step towards the eventual development of a transformation system for the yeast E. fibuliger, an integrative plasmid containing the 5.8S and a part of the 26S rRNA gene, a selectable marker conferring resistance to the G418 antibiotic and a reporter gene, the α-amylase (ALP1) gene of E. fibuliger, was constructed. This plasmid was linearized at a unique restriction site within the 26S rRNA gene, and transformed into S. cerevisiae INVSC2 MATa his3 ura3 using the lithium acetate method to test the functionality of the vector system. Transformation into S. cerevisiae INVSC2 MATa his3 ura3 was by virtue of the extensive homology between the sequenced 26S rRNA gene of E. fibuliger 8014 met and that of S. cerevisiae, so that homologous pairing and integration into the recipient chromosome was possible. The G418-resistant S. cerevisiae transformants produced halos on starch medium due to hydrolysis by α-amylase, and they were further analysed by Southern hybridization with the ALP1 gene and the gene encoding the aminoglycoside 3′- phosphotransferase I enzyme which confers resistance to the G418 antibiotic. A band of 13.7 kb which corresponded to the linearized size of the transforming plasmid DNA was obtained on the autoradiogram, suggesting that tandem copies of the plasmid DNA are present in the chromosome. Finally, an assay of the α-amylase enzyme secreted extracellularly was performed on the transformants.  相似文献   

16.
17.
We have developed a high-frequency cotransformation system which is useful in introducing nonreplicating circular DNA plasmids into the fission yeast Schizosaccharomyces pombe. This system depends on two factors: the ability of the ural-complementing helper plasmids pFYM2 and pFYM225 to propagate autonomously in S. pombe, and the intensive recombination activity intrinsic to this yeast. If cotransformed with a helper plasmid, plasmids such as YIp5 or YIp32, Escherichia coli-Saccharomyces cerevisiae shuttle vectors incapable of replication in S. pombe, can enter S. pombe and express the gene carried on them at a frequency comparable to that of autonomously replicating plasmids (10(3) to 10(4) transformants per microgram of DNA). Even if characters of the nonreplicating DNA are not selected directly, 50 to 70% of Ura+ cells transformed with the helper have also incorporated the nonreplicating plasmid. It is shown that these two plasmids have physically recombined at a site of common DNA sequence to form a heteropolymer in the fission yeast. Since any foreign DNA cloned in pBR322 or ColE1 derivatives can be incorporated into S. pombe by using pFYM2 or pFYM225 as a helper, this cotransformation system will serve as a convenient method to examine functional expression of such cloned DNA in S. pombe. This work also demonstrates that the kanamycin resistance gene carried by the bacterial transposon Tn903 can be expressed in S. pombe, as shown by its ability to inactivate the antibiotic G418.  相似文献   

18.
V Razanamparany  J Bégueret 《Gene》1988,74(2):399-409
Transformation of the ura5-6 mutant strain of Podospora anserina with a recombinant vector carrying the ura5+ gene often results in the integration of the transforming plasmid by non-homologous recombination outside of the genomic ura5 locus. To investigate the mechanism of such integration, we rescued the integrated plasmid from three transformants. In two cases, the rescued plasmid was highly altered compared with the original transforming vector. We cloned the junctions between plasmidic DNA and genomic DNA of the transformants and determined their nucleotide sequences. It was found that there was little homology between plasmidic and genomic DNA sequences. Moreover, in all cases deletions of plasmid sequences at the integration site had occurred. These rearrangements can be explained by the formation of multimeric plasmids prior to integration.  相似文献   

19.
Summary By using two chimeric plasmids containing yeast URA3 gene as a selection marker and 2 m yeast DNA linked to the bacterial plasmid pCR1, a yeast strain devoid of any 2 m DNA sequence was transformed. Recovery in E. coli of plasmids from yeast transformants showed that the 2 m-less strain was able to maintain the chimeric plasmids as autonomous replicons, with very infrequent plasmid recombination. Hybridization experiments gave no evidence for integration of the URA3 DNA sequence in the chromosomal DNA. The transformed clones showed a high stability of the ura+ character during vegetative multiplication, even in the absence of selective pressure. The specific activity of orotidine 5 monophosphate decarboxylase (coded by the URA3 gene) was 5 to 10 fold higher than in the wild type.These features should offer new possibilities for cloning with yeast.  相似文献   

20.
Cotransformants of yeast cells by two partially homologous plasmids, one of which is incapable of autonomous replication, has been used to construct multiply marked recombinant plasmids. Only simultaneous elimination of three yeast markers was registered when episomal plasmid, carrying Ade2 gene, and integrative plasmid, carrying yeast genes LEU2 and URA3, were cotransformed. Transformants, in which yeast genes LEU2, URA3 and HIS3 are linked, have been isolated by analogous technique. The genetic analysis has confirmed existence of plasmid cointegrates in the transformant cells, which carry three yeast genes, bacterial DNA fragment and 2 micrometers DNA fragment, coding for replicative functions. Recombination in the region of bacterial plasmid pBR322 might have resulted in formation of such plasmids. Plasmid recombination in cotransformants has been used to construct multiply marked circular chromosomes, having included yeast genes LEU2, URA3 and TRP1, centromere of the IV yeast chromosome and the sequence coding for their replication in yeast as well as in E. coli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号